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1. From Scientific Concepts to Signs – Leveraging STEM 

Glossaries in Deaf Education  
Audrey M. Cameron 

This chapter explores the innovative use of STEM sign language glossaries in deaf 

education, focusing on the Scottish Sensory Centre (SSC) BSL Glossary project. It 

examines the critical intersection of deaf education, sign language, and STEM subjects, 

highlighting the challenges and opportunities in teaching complex scientific concepts 

to deaf students. The chapter traces the evolution of sign language glossaries and 

details the meticulous process of developing scientific signs. Through examples from 

various scientific disciplines, including geography, biology, astronomy, and chemistry, 

it demonstrates how carefully crafted signs can bridge the gap between written 

scientific terminology and visual-spatial cognition. The chapter also discusses the 

impact of these resources on conceptual understanding, presenting evidence from 

classroom observations and research. By exploring the development and application 

of sign language in STEM education, this work illuminates the transformative potential 

of visual language in conveying complex scientific ideas, enhancing accessibility, and 

promoting equal opportunities for deaf learners in STEM fields. 

This is a Transcript of the IS videos 

The author gratefully acknowledges the contributions of the SSC BSL Glossary team, 

including Gary Quinn and Rachel O’Neill, whose collaborative efforts in developing the 

signs and concepts discussed in this chapter were invaluable. The IS videos were 

translated by David Summersgill (sign language interpreter), and the images were 

produced by Abigail Sheridan and Molly McInulty. 

1.1 Introduction: Bridging STEM and Sign Language 

https://edin.ac/4fc2fLl  

 

This chapter explores the critical intersection of deaf education, sign language, and 

STEM subjects, focusing on the work of the Scottish Sensory Centre (SSC) BSL Glossary 

project. As we delve into the challenges and opportunities in teaching complex 

scientific concepts to deaf students, we will examine the evolution of sign language 

glossaries, the meticulous process of developing scientific signs, and the impact of 

these resources on conceptual understanding. From the visualisation of geographical 

landscapes to the representation of abstract chemical processes, this chapter 

illuminates how carefully crafted signs can bridge the gap between written scientific 

terminology and visual-spatial cognition. By exploring examples across various 
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scientific disciplines, we aim to demonstrate the transformative potential of sign 

language in STEM education for deaf learners. 

 

1.2. Teaching Science and STEM Through Conceptual Understanding 

https://edin.ac/3Ls4Xin  

 

Driver et al. (2014) found that providing learners with opportunities to conduct 

experiments, engage in ‘hands-on’ activities and dialogue with their peers is essential. 

These experiences are crucial for facilitating understanding. More successful learners 

typically grow up in environments where they can understand those around them and 

use that knowledge to make connections when they start school, which is critical for 

their development. Deaf students, however, require more examples to give them the 

necessary understanding to grasp concepts (Jones 2014; Flores & Rumjanek, 2015; 

Cameron et al., 2017). Driver et al. (1994, 2014) emphasise that children need access 

to dialogue to interpret and understand experiments and activities collaboratively. 

Teachers play a vital role in this process by guiding students and contributing to their 

construction of meaning.  This cannot be done solely by the students themselves. 

Teachers should ask probing questions like ‘Why?’ to assess students’ understanding 

and to stimulate their critical thinking.  

Deaf people often have fewer opportunities to participate in these experiences and 

environments, most effective when all parties can communicate fluently in sign 

language. This allows for the development of an understanding of scientific concepts 

(Lindahl, 2015; Mercer & Littleton, 2007). We all construct our way of looking at the 

world, and it is important to ask children about their perspectives, which may differ 

from our own. By understanding a pupil’s ‘worldview,’ educators can transform their 

thinking through teaching. Students need opportunities to explore the world outside 

the classroom.  Reading about concepts isn’t enough; they require access to learning 

in diverse learning modalities, such as pictures, experiments, outdoor activities, and 

films (Jones, 2014; Raven & Whitman, 2019; Lindahl, 2015 & 2021). Deaf children need 

the entire learning experience, with a strong emphasis on dialogue. This 

comprehensive approach ensures they develop a complete grasp of concepts. 
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1.3. History and Evolution of Sign Language Glossaries 

https://edin.ac/3ScSF1c  

 

Sign language glossaries/lexicons have existed for many years (McKee & Vale, 2017). 

Initially, signs were recorded in books using drawings of the signs accompanied by 

written words. Then came photos – still images, often arranged in sequence to show 

the movements of the signs. Some images included notations to indicate the 

handshape and movements, sometimes with arrows to show direction (Brien, 1993).  

With the advent of film, the movement of signs could be captured more fully. VHS and 

video recorders were later followed by CD-ROM(Signs for Education – the definite BSL 

reference for education), DVDs. Now, the internet allows signs to be filmed and 

uploaded to websites which can be seen globally (Scottish Sensory Centre’s STEM in 

BSL glossary: 

https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence.html). In 

the past, signs in books were static, but today, video clips can be easily replaced and 

updated. The web has also enabled glossaries to grow in size. 

Lang was the first to set up a website of signs linked to STEM at the National Technical 

Institute for the Deaf at Rochester Institute of Technology (NTID/RIT) (Lang et al., 

2007). Since then, glossaries have grown significantly. In 2023/24, the Global Year of 

STEM Sign Language Lexicons brought together various groups developing glossaries 

worldwide to share their work (Global Year of STEM Sign Language Lexicons 2023-

2024). This gathering allowed us to meet, support one another, and discuss our 

strategies.Different groups create their glossaries in various ways (Cohen, 2024). Some 

use a ‘self-load’ method, inviting individuals to film and post signs for specific terms, 

thereby creating a corpus of signs. Other groups follow a more collaborative approach, 

where signs are identified, recommended or developed through group discussions 

(SSC signs development project: 

https://www.ssc.education.ed.ac.uk/BSL/index.html#top ) (Cameron et al., 2019; 

O'Neill et al., 2020). Some glossaries have been compiled by sign language interpreters 

or educators. Uploading video files to the web has made this process much more 

manageable. Look at the list of different glossaries from around the world, all aiming 

to facilitate better access to STEM for deaf people (Table 1).  

 

 

 

https://gallaudet.edu/science-technology-accessibility-mathematics-public-health/2023-global-year-of-stem-sign-language-lexicons/
https://gallaudet.edu/science-technology-accessibility-mathematics-public-health/2023-global-year-of-stem-sign-language-lexicons/
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1.4. Purpose of SSC BSL Glossary 

https://edin.ac/46cz0nI  

 

The Scottish Sensory Centre (SSC)’s BSL Glossary was established following research 

conducted by Dr Mary Brennan in 2000.  At that time, she researched sign linguistics 

at the University of Edinburgh and investigated the challenges deaf pupils faced 

accessing national examinations.  Mary subsequently wrote to the Scottish 

Qualifications Authority (SQA) to request fair access for deaf students, proposing that 

teachers be allowed to sign the exam questions and that deaf students give their 

answers in sign language (Brennan, 2000).  The SQA approved this in 2000, but then 

Mary quickly identified a significant issue – a shortage of signs for the STEM 

vocabulary.  

In response, Mary collaborated with Gerry Hughes, a deaf maths teacher, and 

together, they created a pilot glossary for Maths, which initially contained 90 signs 

(https://www.ssc.education.ed.ac.uk/BSL/maths.html).  The response to the new 

glossary was positive and demonstrated the need for a more comprehensive 

one.  Since then, with intermittent funding, the SSC glossary has continued to expand. 

Further demonstrating the demand for a glossary, research commissioned by the 

Royal Society in 2018 surveyed the number of disabled students pursuing STEM 

subjects in Higher Education in the UK over ten years from 2007/8 to 2018/9 (Joice & 

Tetlow, 2021). For deaf students, the figure was only 0.3% in 2008, and 10 years later, 

it was found that whilst the number of disabled students had increased overall, the 

percentage of deaf students remained at 0.3%.  

 
Figure 1: Graph showing the number of disabled students studying STEM in Higher Education over ten years 

(2007/8 to 2018/19). (Joice & Tetlow, 2021).  
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This stagnation persisted despite advancements in support, such as the Disabled 

Students’ Allowance (DSA) and access to sign language interpreters and notetakers. 

The primary cause seemed to be the limited access to STEM sign vocabulary for deaf 

students at school and university. Educators and sign language interpreters need 

access to a glossary of STEM signs to support deaf students better (Cameron et al., 

2017).  

In the United States, Lualdi et al. (2023) wrote an article about deaf people’s 

experiences of learning and working in the field of STEM. This article also identified a 

lack of access to appropriate signs for STEM terms as one of the barriers. This barrier 

also included interpreters not having the signs, which meant it was hard for deaf 

students to discuss their work with fellow students and colleagues. These experiences 

demonstrate the importance of sign glossaries. 

1.5. Structure and Content of the SSC BSL Glossary 

https://edin.ac/3yesfFc 

The SSC Glossary Website homepage 
(https://www.ssc.education.ed.ac.uk/BSL/index.html#top ) features a number of 
tiles (pictures/graphics), each representing different topics such as Astronomy, 
Biology, Chemistry and Geography.  Clicking on the tile will expand to show 
(https://www.ssc.education.ed.ac.uk/BSL/environmenthome.html):  

● Left Side:  A list of subtopics 

● Right Side:  An A-Z menu for alphabetical browsing. 

Alphabetical List  This A-Z list is useful if you encounter a scientific term and need the 

equivalent sign. For example, to find the scientific term starting with ‘B’, click on ‘B’ 

and select from the dropdown menu. 

Topic-Based Signs. On the other side of the screen, signs are grouped according to 

topic within the subject area 

(https://www.ssc.education.ed.ac.uk/BSL/environment/theme1.html). Clicking on a 

tile brings up terms related to that topic along with the corresponding signs, which 

can be helpful for: 

● Teachers teaching a specific topic 

● Interpreters learning relevant signs of a specific topic 

● Students learn from home and can watch the explanation that goes with the 

signs.  

Video Demonstrations  Clicking on any scientific terms brings up a video of the 

sign.  Below the video is an option for ‘explanation’ or ‘definition’, which, when 

clicked, shows a signed explanation of the term along with a written English 

https://edin.ac/3yesfFc
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translation.  This makes the Glossary a bilingual resource, with signs for terms, signed 

definitions and English translations. The signed definitions are not translations from 

written texts in textbooks; rather, the text is a translation of the signed videos (O'Neill 

et al., 2019).  

Example videos  In 2008, we asked students what they thought of the glossary when 

they were looking at it; they told us they wanted more video examples so that they 

could see how the signs related to science in the lab or outside (for example, actual 

topography), i.e., real-life examples. So, we’ve added another link under the term that, 

when clicked, brings up these example videos (Cameron et al, 2012, 2017).  

A short reel showing different examples from the SSC Glossary (Table 2). 

● Distillation , 

● Corrie , 

● Stamen ,  

● Mixture and Separation ,  

● Reflecting Telescope , 

Feedback and Use Feedback from users (students, teachers and interpreters) has been 

positive, highlighting that the signs, explanations, and examples enhanced 

understanding of scientific concepts for young people (Cameron et al., 2017). Teachers 

have said the Glossary has helped them teach and how to explain the concepts 

through sign language. The same has been true for interpreters working in schools and 

universities, who have been uncertain about signing STEM content.  Teachers have 

also been using the signs in the SSC glossary in their lessons because they found they 

help their non-deaf pupils’ to understand complex scientific concepts (Hickman, 

2013). On-screen presenters also provided interpretations using signs from the 

glossary.  

1.6. Visualising STEM Concepts: The Sign Development Process  

https://edin.ac/3Wsfhgr  

This section will explain the SSC’s sign development process.  The sign development 

team consists of individuals from three types of expertise and backgrounds:  deaf 

scientists who hold degrees or PhDs in their respective fields and possess in-depth 

knowledge of science and STEM;  deaf educators/teachers who are proficient in 

teaching and explaining scientific concepts; and sign linguists, who contribute 

theoretical insights into signed languages and their linguistic principles. All team 

members have grown up using sign language, bringing a combination of experiences 

to the discussions (Cameron et al., 2017; O’Neill et al., 2019). Eight or nine people are 

invited to join the sign development team for each project. The process begins by 



 

 

10 

examining scientific terms used in the school curricula, which are then grouped into 

themes or sub-topics. A term is selected, and the team reviews existing signs that may 

already be in use. If a sign does not exist for a term, it is identified for development.  

This sign development process revolves around group discussions, during which team 

members share their thoughts and ideas on visually representing the term in sign 

language. Discussions focus on what the term visually represents, its function, and 

how it should be expressed. Importantly, the process does not centre on the written 

word or scientific term itself but on creating a sign that visually captures the 

underlying idea or concept. 

For example, consider the term “B-L-A-C-K  H-O-L-E”.  Black holes form when a 

massive star dies and undergoes a supernova.  During a supernova, intense 

gravitational forces cause the star’s core to collapse inward.  The written term ‘Black 

Hole’ implies something that is ‘black’ in colour and has a ‘hole’ in it.  However, simply 

combining the signs “BLACK” and “HOLE” would be inappropriate.  Instead, the 

scientific sign ‘BLACK HOLE’ visually represents the process of star collapse that leads 

to the formation of these black holes.  

The sign development team carefully considers the meanings of selected terms. Once 

an idea for a sign is agreed upon, it is captured on video and uploaded to a private MS 

Team site. Members can then comment, suggest improvements, or approve of the 

sign.  Additionally, deaf children are shown the signs and asked for feedback on 

clarity.  

Once a sign successfully navigates this process, it is refilmed, edited and posted on the 

SSC BSL glossary website. The website features videos of term definitions, each 

accompanied by a written English translation, making it a bilingual resource.  Visitors 

can watch the sign and read the text. Pictures that visually match the sign 

representation have also been added. We also create Example videos to show how 

the sign is used in sentence. After completion, the content becomes publicly available. 

A photograph of the BSL glossary team is shown at the end of this video.  
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BSL Glossary Team 

John Denerley     Tina Kelberman  

Rob Rattray     Dr Audrey Cameron 

Gerry Hughes     John Wilson 

Pauline Jordan     Gary Quinn 

Ixone Saenz Paraiso     Dr Mark Fox 

Mary Frances Dolan    Lee Robertson 

Cathie Birch     Janet Wardle-Peck 

Liam McMulkin     Claire Leiper 

Alasdair Grant     Jaabir Mahmoud 

Dr Colin Dunlop     Katherine O’Grady 

Mark McQueen     Kirsty Vessey 

John Brownlie     Ben Fletcher 

Ben Glover     Ken O’Neill 

Nicola Jackson     Malcolm Sinclair 

Claire Cummings    Frankie McLean 

Billy Jack Gerrard    Rebecah Taylor 

Dominic Fox     Sujit Sahasrabudhe  

Derek Rodger     Tania Allan 

Sanchu Iyer 
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1.7. Subject-Specific Sign Development: Examples from Various STEM 
Fields  

https://edin.ac/4cItNXl  

Having explored the general process of sign development, we now turn to specific 

examples from different STEM disciplines. These examples illustrate how the 

principles of visual representation and conceptual understanding are applied across 

various scientific domains. We will examine sign development in Geography, Biology, 

Astronomy, and Chemistry, each presenting unique challenges and opportunities. 

Through these examples, we aim to demonstrate how signs are crafted to represent 

physical landscapes, biological structures, celestial bodies, and abstract chemical 

concepts. By exploring these diverse fields, we can better understand the versatility 

and power of sign language in conveying complex scientific ideas. 

1.7.1 Geography: Representing Landscapes and Topography  

https://edin.ac/4cOAwPw 

Geography can be incredibly visual as a subject because the landscape is observable. 

Signs can show the topography of a place, such as a U-shaped valley or 

an arête or corrie – caused by glacial erosion. They can also represent rivers. There 

are many ways that the signs can help us visualise the landscape, including more gently 

sloping valleys, U-shaped or V-shaped valleys with tributaries feeding into the 

river.  The contours can show how steep the slopes are. On the map, the slopes are 

steeper if the contours are close together.  If they are wide apart, the slope becomes 

less steep.  The shape and movement of the signs can be changed to represent these 

features and demonstrate the topology.  Here are examples. i. topography, ii. map 

reading (table 2). 

1.7.2 Biology: Visual Representation of Location and Function 

https://edin.ac/3LvgFZy  

Whereas chemistry, as a subject, often deals with abstract concepts (De Jong & Taber, 

2007), biology is more visual, involving tangible elements that we can see (Höst, 

2022). That said, in developing/creating signs, we still need to think very carefully 

about where, for example, the organs are in the body, what their actual shape is like, 

and what their function is.  

For example, using the sign for HEART it is necessary to show its location in the body, 

what it looked like as an organ, where blood flows in (e.g. vena cava) and out (e.g. 

aorta), and how it fits into the circulatory system. Proper referencing of the sign in the 

right place is essential to avoid inaccuracies.  
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The same careful consideration applies to plants. The team spent time examining plant 

structures and photographs to ensure accuracy. In this picture, you can see the 

reproductive part of the flower with the stigma and ovules. 

Terms like ‘stem cell’ required particular attention. The signs are a representation of 

our understanding of a scientific concept.  Our bodies contain stem cells (STEM CELL) 

- these cells have no function other than the capacity. Our initial sign for stem cells 

was ‘STEM CELL’, showing the transformation.  However, upon consulting with a stem 

cell research expert, we learned that the initial sign was inaccurate because it depicted 

differentiation, not the potential of stem cells.  Consequently, we revised the sign to 

accurately represent the potential for change (new STEM CELL sign). We must be 

mindful of ensuring the signs accurately reflect the location in the body, appearance, 

and function of the biological organs they represent.  Unlike spoken and written 

language, which can be vague, signs must be precise, as errors are immediately 

noticeable. The process of creating signs involves extensive discussion, the use of 

pictures and asking numerous questions to ensure correctness. 

1.7.3 Astronomy: Designing Planetary 

https://edin.ac/3Ya6Xn4  

When thinking about creating signs, we focused on the visual aspects.  However, we 

were also influenced by the character or properties of the objects. An example of this 

can be seen in the Astronomy in BSL Glossary (Cameron, 2015).  

There are eight planets in the Solar System.  The first four planets are called the inner 

planets, followed by an asteroid belt, and the other four are called the outer 

planets. During the sign development workshops, we created a chart to identify the 

differences between the planets.  
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Figure 2: Chart of the solar system planets and their properties.  We used the properties in red to help develop the 

new signs. The planet nearest the Sun is Mercury. The sign we created is MERCURY, which incorporates the sign 

for HALF. This is because one side of Mercury is incredibly hot, whereas the other is bitterly cold. The side that 

faces the Sun is exposed to intense heat, whereas the side facing away from the Sun is intensely cold. Mercury 

rotates very slowly, and due to its little or no atmosphere, it loses any heat that it gains very quickly (NASA 

Science n.d.).  

The next planet out from the Sun is Venus (signs VENUS). The use of a non-manual 

feature (NMF) (puffed cheeks) represents the incredibly dense atmosphere, which is 

made up of heavy carbon dioxide gas (CO2) (NASA Science n.d.).  

Next comes Earth, for which there is already a common sign (EARTH) in the deaf 

community. However, from an astronomy perspective – looking at the Earth from 

space, we focused on the presence of water (NASA Science n.d.). Therefore, we 

incorporated the sign for WATER into the sign for EARTH.   

Then comes Mars, known as ‘The Red Planet ‘ (NASA Science n.d.). Instead of focusing 

on its colour, the glossary team chose a different characteristic: Mars has 

two moons, (MARS). This feature of having two moons is incorporated into its sign.  

The next four planets are gaseous giants, while the first four planets are solid and 

made of rock.  This is represented by the closed handshape/fist, which forms the 

shared base handshape in MERCURY, VENUS, EARTH and MARS. The base sign changes 

to an open handshape for the four gas giants.  
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Figure 3: Closed (i) and open (ii) handshapes representing (i) rocky and (ii) gaseous planets. 

 

Jupiter is next (JUPITER), and the open fingers of the right hand represent Jupiter's 

characteristic stripes (NASA Science n.d.). Saturn (SATURN) follows, with the right 

hand representing the wide ring system of ice particles with rocky debris and dust 

circulating the planet (NASA Science n.d.). 

Moving along, we come to Uranus. We believe that an Earth-sized object collided with 

Uranus long ago, knocking it off its original angle of rotation (NASA Science, n.d.). It’s 

the only planet in our solar system that rotates at a 90-degree angle compared to the 

others. This unique angle of rotation is shown in the sign by changing the orientation 

of the sign (URANUS). The right hand represents the rings of Uranus, which are smaller 

than those of Saturn (SATURN).  

Finally, we come to Neptune, a very cold planet. Neptune has sixteen known moons, 

but one (Triton) of them orbits Neptune in the opposite direction to the others (NASA 

Science, n.d.).  This is shown by the 15 moons represented by open fingers moving in 

one direction and a single finger moving in the opposite direction to represent the 

moon with the opposite orbit. 

These examples demonstrate the sign development team’s thinking about visuality 

and the properties or characteristics when creating the signs. We have tried to create 

links between. 

1.7.4 Chemistry – Representing Abstract Concepts  

https://edin.ac/3Sbxnkp  

Chemistry is often challenging to teach because it is abstract, conceptual and 

theoretical, unlike biology, where one can see animals and plans, or physics, where 

forces and their impacts are observable, such as direction.  Chemistry often involves 

invisible processes (Johnstone, 1991; Taber, 2013; Reid, 2021; Soeharto & Csapó, 

2021). For instance, mixing two colourless solutions can suddenly produce a yellow 

precipitate, but we can’t see how or why that happens. Chemistry relies heavily on 

theoretical concepts and modelling (Taber, 2012).   

Extensive research in Chemistry education highlights the importance of visual 

representation, including drawings, pictures, gestures, and signs, to help students 
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understand these abstract concepts (Gates, 2017; Kiernan et al 2020, 2024). One 

useful framework is Johnstone’s Triangle, which examines chemistry on three levels 

(Johnstone, 1991; Taber, 2013; Reid, 2021): 

1. Macroscopic Level – Observable phenomena.  For example, mixing two colourless 

solutions to form a yellow precipitate or the colour and smell of toast when it pops 

out of a toaster.  

2. Microscopic Level – Atomic and molecular level. This involves visualising ATOMS, 

PARTICLES and MOLECULES and understanding their interactions, bonding and 

behaviour.For example, understanding how heating affects bonds within structures.  

3. Symbolic Level – Use of symbols and formulas. This includes chemical equations 

and symbols like ‘C’ for Carbon; in an equation, ‘+ O2’ becomes CO2, representing 

chemical reactions and compositions. 

Teaching Chemistry requires addressing all these levels.  Demonstrating experiments 

and active learning helps link the observable (Macroscopic) with the unseen 

(Microscopic) and the symbolic representation in equations and formulae. Signs can 

help to make things clearer at the microscopic level (Clark et al., 2021; Cameron et al., 

2017).  

For example, the sign for ATOM involves moving the index finger of the dominant right 

hand around a closed left fist, representing an ELECTRON orbiting a nucleus.  Using a 

single finger in the horizontal plane looks like the symbol for ‘negative’ (-) and 

indicates that the electron has a negative charge. The closed left fist in the sign 

represents the nucleus with a positive charge, which attracts the negatively charged 

electron, preventing it from leaving its orbit. We don’t know where the electrons are 

at any given moment, but you can find them within the orbitals. This sign can be 

modified to show different orbital structures, such as s- and p-orbitals. In general, we 

use the ATOM sign to show the movement of electrons, and as one studies further, 

the shape of different orbitals can be modified. 

The NUCLEUS has two types of particles: NEUTRONS, represented by a symbol for zero 

due to their neutral charge, and PROTONS, which is positively charged. Within the 

nucleus, we have NEUTRONS and PROTONS. Combined with the ELECTRONS, we have 

the sign for ATOM.  

The sign ATOM is a visual representation that can be further modified to show, for 

example, the exchange of electrons between atoms in a CHEMICAL REACTION such as 

a REDOX REACTION. This sign illustrates the loss of an electron from one atom 

(OXIDATION) and the gain of an electron by another atom (REDUCTION) during the 

reaction. Research indicates that such visual models are crucial for understanding 
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Chemistry, and the flexibility these signs offer can aid that understanding. 

Representing theoretical ideas through pictures, models, experiments, and written 

formulae aids in comprehending this complex subject. 

1.7.5 Family of Signs: Aiding Conceptual Understanding 

https://edin.ac/4bTtck6  

The sign development team thought long and hard about creating links between the 

signs we created to form what we call a ‘family’ of signs, which together build an 

understanding of the broader concept (Cameron et al., 2017; Quinn et al., 2021). For 

example, consider the terms ‘Mass’ and ‘Weight’. We already have a sign in common 

use, WEIGHT, but the sign is different in the context of STEM. We focused not on the 

deaf community's everyday use of the word ‘Weight’ but on its scientific context. 

‘Mass’ differs from ‘Weight’; everything is made up of mass - my clothing, body, the 

air around us, tables, etc. ‘Weight’, on the other hand, is a force acting on mass, and 

that force is ‘Gravity’.  The sign for mass is this (signs MASS), which represents the 

matter from which everything is made, and this is the sign for GRAVITY. If we combine 

these two signs (MASS + GRAVITY), we get WEIGHT, which demonstrates the concept: 

MASS + GRAVITY = WEIGHT.  

By using the sign, we can show the force of gravity, for example, here on Earth, 

compared to on the moon, where the gravitational pull is less. In this instance, the sign 

is articulated more slowly – we see the impact on weight in the film of astronauts 

bouncing along on the surface of the moon. What’s important to note is that the mass 

remains the same here and on the Moon – the gravitational pull is different: GRAVITY 

(on Earth) and GRAVITY (on the Moon). Children understand this when they see the 

signs, and that’s significant.  

Another example of a ‘family’ of signs is in Chemistry, specifically within the theme of 

chemical reactions. Take a look at the following different chemistry terms and 

variations in signing.  

CHEMICAL REACTION - REACTANT - PRODUCT - NON-REVERSIBLE REACTION - 

REVERSIBLE REACTION - ENDOTHERMIC REACTION - EXOTHERMIC REACTION  

These are all different terms, yet they are connected to one another. The morphology 

of the sign varies slightly to represent each chemistry term, but notice that every sign 

has the same central movement (from left to right), and each introduces a slight 

variation to create a new meaning/product as the sign concludes on the right. The 

movement follows the direction of a written chemical equation – this left-to-right 

movement is maintained throughout. Movement can also be modified to represent 

the speed of the reaction, whether it be fast or slow. It can also be modified to show 
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the presence of heat being given off – EXOTHERMIC, or a drop in temperature 

occurring during the reaction – ENDOTHERMIC. Throughout all of these modifications 

in the morphology, the placement and movement are maintained – creating a 

connection between signs, which helps to construct a sound conceptual 

understanding. 

1.8. Impact of Sign Glossaries on Learning 

1.8.1 Conceptual Understanding: Electricity – AC vs DC Concept  

https://edin.ac/46eUm3J 

Does access to the STEM Sign Glossary aid conceptual understanding? In a small 

research project using a linguistic ethnographic methodology to explore the use of 

sign language in dialogue, I had the opportunity to observe and video record pupil 

discussions in the science classroom (Kusters & Hou, 2020). One part of the process 

that drew particular attention was a group of pupils who had been instructed to 

research and prepare a presentation on the differences between AC (alternating 

current) and DC (direct current) as part of the topic on ‘electricity’. The students went 

home and returned the following day with their presentations.  

While presenting their research to their peers, the first student referred to the word 

‘current’ on their slides. At this point, the student seemed a little uncertain about the 

meaning of the word and signed CURRENT in its more usual sense, meaning ‘now’ or 

‘currently’ – clearly a different meaning. The glossary includes signs for ‘Current’, ‘AC’ 

and ‘DC’ to represent the flow of electricity along a wire; DC represents the electrical 

current flowing in one direction only, while AC represents current flowing in both 

directions. This pupil didn’t know these signs, leading to an incomplete understanding 

of the concept in this context and signing CURRENT as ‘now/currently’.  

The pupil then asked the class teacher for the sign for the scientific term, and when 

the teacher signed CURRENT, the pupil understood. The next student to present used 

the sign (electrical) CURRENT correctly. This demonstrates the importance of having 

the appropriate sign as an aid to understanding (Lang et al., 2007; Kurz & Pagliaro, 

2019; Enderle et al. 2020; Cameron, 2024). 

1.8.2 Vocabulary Access: Teaching Density 

https://edin.ac/3zOQISb 

A different group activity illustrates how using a sign glossary can improve conceptual 

understanding (Cameron, 2024). In a class of younger pupils (five to six years old) 

learning about the terms ‘float’ (FLOAT) and ‘sink’ (SINK), the teacher instructed the 
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children to collect objects and drop them into a tank of water, predicting whether each 

item would float or sink. 

One pupil picked up an object, dropped it into the tank, and was surprised when it 

floated instead of sinking. Throughout the activity, some items floated while others 

sank. After the activity, the teacher explained that whether an object floats or sinks is 

determined by ‘density’ (DENSITY), a sign from the SSC glossary. The teacher clarified 

that if an object is dense, it will sink; if it is not, it will float. Density is a combination of 

mass and volume - objects with less mass relative to their volume will float, while 

those with more mass (particles closely packed together) will sink, like metal. 

However, with more space between particles, wood will float, as seen when a tree 

trunk falls in water. 

The teacher explained these concepts to the five- and six-year-olds. At the end of this 

lesson, the teacher asked again, “Why do some objects float and others sink?”. They 

responded using the sign DENSITY from the glossary, demonstrating that access to the 

sign glossary and vocabulary in sign language can aid conceptual understanding. 

1.8.3 Facilitating Understanding Through Sign and Dialogue 

https://edin.ac/3zVzYse 

Lindahl (2015 & 2021) found that sign language, along with text and pictures, can 

facilitate access to conceptual understanding. These elements help, and signs are 

particularly important as part of the dialogue. Lindahl discovered that while access to 

sign vocabulary was important, it was not sufficient on its own.  More is needed to 

facilitate discussion and the construction of meaning.  Lindahl also emphasises the 

importance of teachers understanding these signed discussions so that they can 

recognise when pupils are using signs that indicate their understanding. 

1.9. Conclusion 

https://edin.ac/3Y8PkDX 

The development and implementation of sign language glossaries for STEM subjects 

represent a significant advancement in deaf education.  As we have seen throughout 

this chapter, the SSC BSL Glossary project and similar initiatives worldwide are not 

merely about translation; they are about creating visual representations that capture 

the essence of scientific concepts.  The process of developing these signs involves 

deep consideration of scientific principles, visual representation, and linguistic 

structures, resulting in a powerful tool for conceptual understanding.  The examples 

from geography, biology, astronomy, and chemistry demonstrate how well-designed 

signs can make abstract concepts more tangible and accessible.  Moreover, the 
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observed impacts on classroom learning underscore the importance of these 

resources. As we move forward, continued research, collaboration between deaf 

scientists, educators, and linguists, and the integration of sign language resources into 

STEM curricula will be crucial in ensuring equal access to scientific knowledge for deaf 

students. This work not only enhances education for deaf learners but also enriches 

the field of science communication as a whole, demonstrating the unique power of 

visual language in conveying complex ideas. 
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Table 1: Existing Global STEM Sign Language 
Dictionaries/Glossaries/Lexicons 

*These lexicons have STEM within a large lexicon (not solely for STEM). 

Name Country Language Website 

AfricaSign Africa Various https://www.africa-sign.org/ 

ASL-Clear USA 

(Framingham)) 

American Sign 

Language 

https://aslclear.org/ 

ASL-Core USA 

(Rochester) 

American Sign 

Language 

https://aslcore.org/ 

ASL-STEM USA 

(Washington) 

American Sign 

Language 

https://aslstem.cs.washington.edu/ 

Astronomy France (book) French Sign 

Language 

http://sion.frm.utn.edu.ar/iau-

inclusion/wp-

content/uploads/2017/11/Dictionnaire-

Frances.pdf 

Atomic Hands USA American Sign 

Language 

https://atomichands.com/ 

Austin Community 

College 

USA (Austin) American Sign 

Language 

https://accmultimedia.austincc.edu/sign

s/ 

British Sign 

Language 

Glossaries of 

Curriculum Terms 

United 

Kingdom 

(Edinburgh) 

British Sign 

Language 

https://www.ssc.education.ed.ac.uk/BSL

/ 

Chemistry for High 

School Students; 

Computer Science 

Greece Greek Sign 

Language 

https://prosvasimo.iep.edu.gr/el/gia-

mathites-me-provlimata-akohs/xhmeia-

me-nohma-b-g-gymnasiou-gia-kofous-

kai-varikoous-

mathites?fbclid=IwAR0k1UAwuCXs4M67

v7vwv6cVf-

WtHJrDk7iRlYdVccDK1HRlL_SzqqZxi2Q 

(available on CD-ROM) 

Cité des Sciences 

(Museum) 

France (Paris) French Sign 

Language 

https://www.cite-sciences.fr/fr/ma-cite-

accessible/sourds-et-

malentendants/ressources/signaire-lsf/ 

DeafTEC USA 

(Rochester) 

American Sign https://deaftec.org/stem-

dictionary/about-the-project/ 
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Dictio* Czech Republic Many sign 

languages 

https://www.dictio.info/ 

Elix* France French Sign 

Language 

https://dico.elix-lsf.fr/ 

Greek Sign 

Language* 

Greece Greek Sign 

Language 

https://www.ocean.upatras.gr/gsl/ 

GEIL Libras Study 

and Innovation 

Group (Pontifical 

Catholic University 

of Rio Grande do 

Sul)* 

Brazil (Porto 

Alegre) 

LIBRAS: 

Brazilian Sign 

Language 

https://www.youtube.com/channel/UCZ

ZtQOxbvuWdNhbJ_a5bq2g/playlists 

ISLEVL - Indian 

Sign Language 

Enabled Virtual 

Lab 

India 

(Chandigarh) 

Indian Sign 

Language 

https://islevl.org/ 

INJS Bourg-la-

Reine 

France French Sign 

Language 

INJS Bourg-la-Reine 

https://ijs.92.dico.free.fr/maths/index.h

tml 

INSA (civil 

engineering) 

France 

(Toulouse) 

French Sign 

Language 

http://devv4.insa-

toulouse.fr/fr/formation/glossaire-gc-

en-lsf.html 

Irish Sign 

Language STEM 

Glossary 

Ireland (Dublin) Irish Sign 

Language 

https://www.dcu.ie/islstem 

Les Doigts Qui 

Rêvent (geology) 

France (Dijon) French Sign 

Language 

ttps://ldqr.org/mots-de-geologie-en-lsf/ 

LexiQue Canada 

(Quebec) 

LSQ https://lexiquelsq.ca/theme/science-et-

technologie/ 

Madrasati Signs 

Platform 

Morocco Moroccan Sign 

Language 

https://madrasati-signs.org/ 

New Zealand Sign 

Language 

Dictionary* 

New Zealand New Zealand 

Sign Language 

https://www.nzsl.nz/ 

Ocelles* France (Paris) French Sign 

Language 

https://ocelles.inshea.fr/fr/accueil 
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Projeto Surdos -

UFRJ 

Brazil (Rio de 

Janeiro) 

Libras https://www.youtube.com/@projetosur

dos/playlists 

Quantum ASL USA (Harvard 

University) 

American Sign 

Language 

https://www.youtube.com/channel/UC3

etnnsIxGpH89XgojqE0Ng 

Shuwaemon Japan Japanese Sign 

Language 

www.shuwaemon.org 

Sign2MINT Germany German Sign 

Language 

https://sign2mint.de/ 

Sign “Maths” France 

(Toulouse) 

LSF signmaths.univ-tlse3.fr 

SignBank* Australia Auslan https://auslan.org.au/ 

Signing Science 

and Math 

Dictionaries 

USA 

(Cambridge) 

American Sign 

Language 

(Avatar) 

https://signsci.terc.edu/index.html 

Slovnik Czech Republic 

(Brno) 

Czech Sign 

Language 

https://slovnikczj.vutbr.cz/ 

Spread the Sign* Global Different sign 

languages 

https://www.spreadthesign.com/en.gb/

search/ 

STIM Sourd France France LSF www.stimsourdfrance.org 

Texas Math Sign 

Language 

Dictionary 

USA (Texas) American Sign 

Language 

https://www.texasdeafed.org/Page/516 

UVED (sustainable 

development) 

France 

(Toulouse) 

French Sign 

Language 

https://www.uved.fr/fiche/ressource/gl

ossaire-du-developpement-durable-en-

langue-des-signes-francaise-lsf 

 
Complied by the Global STEM sign language lexicon team in 2023. 
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Table 2: STEM Signs in BSL 

Sign Source 

Alternating 
current 

https://www.ssc.education.ed.ac.uk/BSL/physics/alternating.html 

Aorta https://www.ssc.education.ed.ac.uk/BSL/environment/aorta.html 

Arête https://www.ssc.education.ed.ac.uk/BSL/geography/arete.html#start 

Asteroid belt https://www.ssc.education.ed.ac.uk/BSL/astronomy/asteroidbelt.html 

Atom https://www.ssc.education.ed.ac.uk/BSL/chemistry/atom.html#start 

Atria/atrium https://www.ssc.education.ed.ac.uk/BSL/environment/atria.html 

Black hole https://www.ssc.education.ed.ac.uk/BSL/astronomy/blackhole.html 

Bonding https://www.ssc.education.ed.ac.uk/BSL/chemistry/bond.html#start 

Carnivores https://www.ssc.education.ed.ac.uk/BSL/environment/carnivores.html 

Chemical 
reaction 

https://www.ssc.education.ed.ac.uk/BSL/chemistry/chemreact.html#sta
rt 

Circulatory 
system 

https://www.ssc.education.ed.ac.uk/BSL/environment/dualcirculatorysy
stem.html 

Contours https://www.ssc.education.ed.ac.uk/BSL/geography/contours.html#star
t 

Corrie https://www.ssc.education.ed.ac.uk/BSL/geography/corrie.html#start 

Current https://www.ssc.education.ed.ac.uk/BSL/physics/current.html#start 

Density https://www.ssc.education.ed.ac.uk/BSL/physics/density.html 

Differentiation 
(stem cell) 

https://www.ssc.education.ed.ac.uk/BSL/biology/differentiation.html#st
art 

Direct current https://www.ssc.education.ed.ac.uk/BSL/physics/directcurrent.html#sta
rt 

Distillation https://www.ssc.education.ed.ac.uk/BSL/chemistry/distillation.html#sta
rt 

https://www.ssc.education.ed.ac.uk/BSL/physics/alternating.html
https://www.ssc.education.ed.ac.uk/BSL/environment/aorta.html
https://www.ssc.education.ed.ac.uk/BSL/geography/arete.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/asteroidbelt.html
https://www.ssc.education.ed.ac.uk/BSL/chemistry/atom.html#start
https://www.ssc.education.ed.ac.uk/BSL/environment/atria.html
https://www.ssc.education.ed.ac.uk/BSL/astronomy/blackhole.html
https://www.ssc.education.ed.ac.uk/BSL/chemistry/bond.html#start
https://www.ssc.education.ed.ac.uk/BSL/environment/carnivores.html
https://www.ssc.education.ed.ac.uk/BSL/chemistry/chemreact.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/chemreact.html#start
https://www.ssc.education.ed.ac.uk/BSL/environment/dualcirculatorysystem.html
https://www.ssc.education.ed.ac.uk/BSL/environment/dualcirculatorysystem.html
https://www.ssc.education.ed.ac.uk/BSL/geography/contours.html#start
https://www.ssc.education.ed.ac.uk/BSL/geography/contours.html#start
https://www.ssc.education.ed.ac.uk/BSL/geography/corrie.html#start
https://www.ssc.education.ed.ac.uk/BSL/physics/current.html#start
https://www.ssc.education.ed.ac.uk/BSL/physics/density.html
https://www.ssc.education.ed.ac.uk/BSL/biology/differentiation.html#start
https://www.ssc.education.ed.ac.uk/BSL/biology/differentiation.html#start
https://www.ssc.education.ed.ac.uk/BSL/physics/directcurrent.html#start
https://www.ssc.education.ed.ac.uk/BSL/physics/directcurrent.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/distillation.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/distillation.html#start
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Earth https://www.ssc.education.ed.ac.uk/BSL/astronomy/earth.html 

Electricity https://www.ssc.education.ed.ac.uk/BSL/physics/electricity.html 

Electron https://www.ssc.education.ed.ac.uk/BSL/chemistry/electron.html#start 

Endothermic 
reaction 

http://www.ssc.education.ed.ac.uk/BSL/chemistry/endothermic.html#st
art 

Exothermic 
reaction 

http://www.ssc.education.ed.ac.uk/BSL/chemistry/exothermic.html#sta
rt 

Giant planet https://www.ssc.education.ed.ac.uk/BSL/astronomy/giantplanet.html 

Glacier https://www.ssc.education.ed.ac.uk/BSL/geography/glacier.html#start 

Gravitational 
pull 

http://www.ssc.education.ed.ac.uk/BSL/physics/gravitational.html 

Gravity http://www.ssc.education.ed.ac.uk/BSL/physics/gravity.html#start 

 

Inner planets https://www.ssc.education.ed.ac.uk/BSL/astronomy/innerplanets.html 

Interdependen
ce 

https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence
.html 

Interdependen
ce 

https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence
.html 

Interdependen
ce definition 

https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence
d.html 

Jupiter https://www.ssc.education.ed.ac.uk/BSL/astronomy/jupiter.html#start 

Map https://www.ssc.education.ed.ac.uk/BSL/geography/map.html#start 

Mars https://www.ssc.education.ed.ac.uk/BSL/astronomy/mars.html#start 

Mass http://www.ssc.education.ed.ac.uk/BSL/physics/mass.html 

Mass https://www.ssc.education.ed.ac.uk/BSL/physics/mass.html#start 

 

Mercury https://www.ssc.education.ed.ac.uk/BSL/astronomy/mercury.html#star
t 

https://www.ssc.education.ed.ac.uk/BSL/astronomy/earth.html
https://www.ssc.education.ed.ac.uk/BSL/physics/electricity.html
https://www.ssc.education.ed.ac.uk/BSL/chemistry/electron.html#start
http://www.ssc.education.ed.ac.uk/BSL/chemistry/endothermic.html#start
http://www.ssc.education.ed.ac.uk/BSL/chemistry/endothermic.html#start
http://www.ssc.education.ed.ac.uk/BSL/chemistry/exothermic.html#start
http://www.ssc.education.ed.ac.uk/BSL/chemistry/exothermic.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/giantplanet.html
https://www.ssc.education.ed.ac.uk/BSL/geography/glacier.html#start
http://www.ssc.education.ed.ac.uk/BSL/physics/gravitational.html
http://www.ssc.education.ed.ac.uk/BSL/physics/gravity.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/innerplanets.html
https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence.html
https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence.html
https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence.html
https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence.html
https://www.ssc.education.ed.ac.uk/BSL/environment/interdependenced.html
https://www.ssc.education.ed.ac.uk/BSL/environment/interdependenced.html
https://www.ssc.education.ed.ac.uk/BSL/astronomy/jupiter.html#start
https://www.ssc.education.ed.ac.uk/BSL/geography/map.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/mars.html#start
http://www.ssc.education.ed.ac.uk/BSL/physics/mass.html
https://www.ssc.education.ed.ac.uk/BSL/physics/mass.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/mercury.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/mercury.html#start
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Mixture https://www.ssc.education.ed.ac.uk/BSL/chemistry/mixture.html#start 

Molecule https://www.ssc.education.ed.ac.uk/BSL/chemistry/molecule.html#start 

Moon https://www.ssc.education.ed.ac.uk/BSL/astronomy/moon.html 

Neptune https://www.ssc.education.ed.ac.uk/BSL/astronomy/neptune.html#star
t 

Neutron https://www.ssc.education.ed.ac.uk/BSL/chemistry/neutron.html#start 

Non-reversible 
reaction 

http://www.ssc.education.ed.ac.uk/BSL/chemistry/nonrevers.html#start 

Nucleus https://www.ssc.education.ed.ac.uk/BSL/chemistry/nucleus.html#start 

Outer planets https://www.ssc.education.ed.ac.uk/BSL/astronomy/outerplanets.html#
start 

Ovules https://www.ssc.education.ed.ac.uk/BSL/biology/ovules.html 

Particle http://www.ssc.education.ed.ac.uk/BSL/chemistry/particle.html#start 

Planet https://www.ssc.education.ed.ac.uk/BSL/astronomy/planet.html 

Product http://www.ssc.education.ed.ac.uk/BSL/chemistry/product.html#start 

Properties https://www.ssc.education.ed.ac.uk/BSL/chemistry/properties.html#sta
rt 

Proton https://www.ssc.education.ed.ac.uk/BSL/chemistry/proton.html#start 

Reactant http://www.ssc.education.ed.ac.uk/BSL/chemistry/reactant.html#start 

Reflecting 
telescope 

https://www.ssc.education.ed.ac.uk/BSL/physics/reflecting.html 

Reversible 
reaction 

http://www.ssc.education.ed.ac.uk/BSL/chemistry/reversible.html#start 

River https://www.ssc.education.ed.ac.uk/BSL/geography/river.html#start 

Saturn https://www.ssc.education.ed.ac.uk/BSL/astronomy/saturn.html#start 

Sign Source 

https://www.ssc.education.ed.ac.uk/BSL/chemistry/mixture.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/molecule.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/moon.html
https://www.ssc.education.ed.ac.uk/BSL/astronomy/neptune.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/neptune.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/neutron.html#start
http://www.ssc.education.ed.ac.uk/BSL/chemistry/nonrevers.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/nucleus.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/outerplanets.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/outerplanets.html#start
https://www.ssc.education.ed.ac.uk/BSL/biology/ovules.html
http://www.ssc.education.ed.ac.uk/BSL/chemistry/particle.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/planet.html
http://www.ssc.education.ed.ac.uk/BSL/chemistry/product.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/properties.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/properties.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/proton.html#start
http://www.ssc.education.ed.ac.uk/BSL/chemistry/reactant.html#start
https://www.ssc.education.ed.ac.uk/BSL/physics/reflecting.html
http://www.ssc.education.ed.ac.uk/BSL/chemistry/reversible.html#start
https://www.ssc.education.ed.ac.uk/BSL/geography/river.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/saturn.html#start
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Solar system https://www.ssc.education.ed.ac.uk/BSL/astronomy/solarsystem.html#s
tart 

Stamen https://www.ssc.education.ed.ac.uk/BSL/biology/stamen.html#start 

Stem cell https://www.ssc.education.ed.ac.uk/BSL/biology/stemcell.html#start 

Stigma https://www.ssc.education.ed.ac.uk/BSL/biology/stigma.html 

Topography https://www.ssc.education.ed.ac.uk/BSL/geography/topography.html#s
tart 

Tributary https://www.ssc.education.ed.ac.uk/BSL/geography/tributary.html#star
t 

Uranus https://www.ssc.education.ed.ac.uk/BSL/astronomy/uranus.html 

U-shaped 
valley 

https://www.ssc.education.ed.ac.uk/BSL/geography/ushapedvalley.html
#start 

Vena cava https://www.ssc.education.ed.ac.uk/BSL/environment/venacava.html 

Ventricles https://www.ssc.education.ed.ac.uk/BSL/environment/ventricles.html 

Venus https://www.ssc.education.ed.ac.uk/BSL/astronomy/venus.html 

V-shaped 
valley 

https://www.ssc.education.ed.ac.uk/BSL/geography/vshapedvalley.html 

Weight http://www.ssc.education.ed.ac.uk/BSL/physics/weight.html#start 
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https://www.ssc.education.ed.ac.uk/BSL/astronomy/solarsystem.html#start
https://www.ssc.education.ed.ac.uk/BSL/biology/stamen.html#start
https://www.ssc.education.ed.ac.uk/BSL/biology/stemcell.html#start
https://www.ssc.education.ed.ac.uk/BSL/biology/stigma.html
https://www.ssc.education.ed.ac.uk/BSL/geography/topography.html#start
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https://www.ssc.education.ed.ac.uk/BSL/geography/tributary.html#start
https://www.ssc.education.ed.ac.uk/BSL/geography/tributary.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/uranus.html
https://www.ssc.education.ed.ac.uk/BSL/geography/ushapedvalley.html#start
https://www.ssc.education.ed.ac.uk/BSL/geography/ushapedvalley.html#start
https://www.ssc.education.ed.ac.uk/BSL/environment/venacava.html
https://www.ssc.education.ed.ac.uk/BSL/environment/ventricles.html
https://www.ssc.education.ed.ac.uk/BSL/astronomy/venus.html
https://www.ssc.education.ed.ac.uk/BSL/geography/vshapedvalley.html
http://www.ssc.education.ed.ac.uk/BSL/physics/weight.html#start
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2.The Development of Mathematical Skills of Deaf Learners: 
Insights from Research and Examples from Practice: 

Olga Pollex, Swetlana Nordheimer, Viktor Werner 

Research on the topics of mathematical development and teaching of deaf children 

has a long and complex tradition with very diverse theoretical, empirical and school 

practical approaches to education of deaf learners (Fleri, 1835; Tabak, 

2014, 2016, Marschark & Knoors, 2012; Werner et al., 2019; Hänel-Faulhaber et 

al., 2023). To give an idea of this variety this chapter refers to the theoretical 

approaches established and grounded in empirical studies.  To modify existing 

theoretical approaches by considering new findings in the research and expectations 

of professionally prepared teachers of mathematics we seek to refer to more 

recent empirical studies focused on mathematical education of deaf schoolchildren. 

These studies give evidence for positive effects on teaching mathematics in Sign 

Languages. Closing our considerations by concrete examples from deaf mathematical 

classroom we would like to challenge experts from research and practice with new 

ideas and open questions. We aim to be critical in theoretical research and concrete 

in our suggestions for school practice, which, according to Becker (2019, p. 85), is 

sometimes ahead of educational policies.  

We, the authors of the paper, come from different theoretical traditions and use 

different research methods in our scientific work. This article should therefore be 

understood as a multi-perspective dialog. Educational researchers, teachers, parents 

and other stakeholders are invited to take part in it.  

Readers who have a basic knowledge of Deaf Studies and pedagogy of Sign 

Languages but are not familiar with didactics of mathematics will be hopefully pleased 

to gain some insights into trends in mathematics education. Those who are already 

familiar with works at the intersection of Sign Languages pedagogy and the didactics 

of mathematics can take the opportunity to expand their knowledge and evaluate 

presented research findings and innovative teaching methods. The handbook is an 

invitation to explore a complex set of phenomena for which there is no single 

theoretical explanation. However, there are some exciting theoretical, empirical and 

practical approaches to investigation into learning of mathematics in Sign Languages. 

Our paper aims to show how seemingly different research perspectives can 

complement each other and that progress towards a comprehensive account of deaf 

children's mathematical abilities and appropriate fostering of potentials requires a 

broad understanding of research from more than one perspective and discipline. The 

main focus of the paper is to provide arguments for mathematics education in Sign 

Languages and to give some ideas how it could be done.  
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In line with the diversity of positions, theoretical backgrounds and practical intentions 

in mathematical education of deaf schoolchildren, the terms “deaf” or “hard of 

hearing” are not used consistently in the scientific literature (see Szűcs, 2019, p. 3). 

This makes it difficult to interpret and reflect on the results. To avoid 

misunderstandings, we will use the term “deaf” as in Scott et al. (2023, p. 3) “to refer 

to a range of hearing levels, from what might typically be referred to as hard-of-

hearing, to profoundly deaf; we also include anyone who would benefit from being 

identified as deaf such as those with central auditory processing disorder, as we 

believe that all would benefit from the model proposed here.” However, the focus of 

this paper is on deaf learners whose main mode of communication is one or more Sign 

Languages.  

We will start with theoretical framework for learning of mathematics in sign languages 

and move on to the empirical studies focused on the effects of Sign Languages on 

learning of deaf schoolchildren. We then present selected intervention studies (Nunes 

& Moreno 1998, 2002, Nunes 2004, Wille 2018, 2019, 2020, Angeloni & Wille 2022) 

and practical examples as a source for arguments for signed mathematics on the one 

hand, and as a source for inspiration for development of didactical concepts and 

materials on the other hand. Finally, we will introduce the following chapters of the 

handbook, which deal specifically with the theory and practice of teaching algebra, 

stochastics and geometry with deaf children. We make no claim to completeness of 

our work and look forward to constructive criticism of our readers, but we are sure 

that we address important aspects of learning of and learning in Sign Languages in 

mathematics lessons. Our investigations can be deepened by the readers through 

recommended scientific literature or direct contact with the teachers and researchers 

we mentioned here and last but not least with us.  

Theoretical Framework 

Looking at the contributions to the conference of the “Gesellschaft 

für Didaktik der Mathematik” in Englisch “Society for Didactics of 

Mathematics“ (GDM) in Germany since 2010, we can see that interest in Sign 

Languages is growing in the German-speaking mathematics didactics community. 

While no articles on teaching mathematics in sign languages were published in the 

years between 2010 and 2015, seven were published in the years 2016 to 2021 and 

seven in the last three years 2022 to 2024. On the other hand, the number of articles 

relating to the subject of mathematics in the journal DAS 

ZEICHEN, German Journal for Language and Culture of the Deaf, has also increased, 

particularly in recent years. In 2022, for example, there were three articles on the topic 

centered on the sign languages in mathematic lessons. 
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The positive effects of Sign Languages on the learning of mathematics and 

mathematical development of deaf learners have been acknowledged in the history 

of Deaf education and intensively studied for example by Rosanova (1978) 

and Yashkova (1988). They dealt with the influence of languages on the organization 

of knowledge in memory and mathematical problem-solving process in deaf learners.   

Sign languages and organization of knowledge in memory and problem solving  

In the studies of Rosanova (1971, 1978) and Yashkova (1988) it was empirically proven 

that deaf children are multilingual and that different language systems are linked in 

their thinking in a complex way. Rosanova (1971) showed that deaf learners grouped 

gestures and signs into semantic fields much more easily than words and were thus 

better able to retain them. The number of grouped gestures, signs and words 

increased over the course of schooling. At the same time, deaf learners became better 

at grouping not only gestures and signs but also words as they got older. With the age 

of the learners, the precision with which the learners assigned the signs and words to 

each other according to their meaning also increased. This means that the memory 

content of deaf people is organized differently from that of hearing people due to their 

multilingualism. Recent studies conducted by Villwock et. al. (2021) give 

differentiated, deep and empirically grounded insights into complexity of activation of 

different languages by hearing and deaf ASL-English bilinguals when they process 

written words. These results are not obtained with specifical mathematical terms, but 

they are still relevant for mathematical teaching of deaf learners especially when it 

comes to the so-called text-problems or word-problems. They also give evidence for 

the actuality and relevance of the didactical assumptions of empirically described 

multilingualism made by Rosanova (1971).  

Model of thinking development inspired by Rosanova (1978) and Yashkova (1988) 

The studies by Rosanova (1978, 1991) showed that development of language 

competences is a very important factor in the mathematical 

development. However, Rosanova’s data showed empirically that language 

competences alone are not decisive for the successful development of mathematical 

abilities in deaf school children. To understand the theory behind empirical studies we 

will now refer to theoretical approaches developed by Rosanova (1978) 

and Yashkova (1988) and explain the difference between so called visual-

imaginative and logical-verbal thinking as these terms are used by Rosanova (1978). 

Visual-imaginative thinking is the ability to think in images and representations that 

replace real objects in order to carry out mental operations. Here not only the external 

appearance, but also the properties of objects and relationships between them should 

be taken into account. To this end, Rosanova (1978) recommends strengthening the 
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relationships between objects and words that denote these objects, their properties 

and relationships. We go further and suggest that the development of visual-

imaginative thinking can be mediated, guided, supported and strengthened by the use 

of productive and conventionalized signs and gestures as designations of 

mathematical objects, mathematical objects themselves, their properties and 

relationships between them, which can be confirmed by empirical data obtained by 

Rosanova (1971, 1978) and Yashkova (1988). Following Rosanova (1978), the term 

“visual-imaginative” is used here to emphasize that it is not only about the sensorial 

perception and operation with visible objects and images, but also about the mental 

imagination, the imagining of objects, their properties, structures and operations with 

them and the detachment from the visibly perceptible objects and models to operate 

with mental and not necessary perceivable (for example visible or tangible) with 

physical eyes or hands images.  

Logical-verbal thinking involves formal mental operations mediated through language 

that may be completely detached from real objects. Here, too, we go further than 

Rosanova (1978) and suggest that this form of thinking should also be consciously 

embedded in Sign Languages as early as possible in order to provide optimal teaching 

and support. At the same time with conventionalized symbolical signs presented 

objects and mental operations can be accompanied by written language and, if desired 

and required, by spoken languages. The decisive factor here is that the individual 

sensorial abilities to perceive symbols, individual linguistic repertoires and current 

stage of mathematical development with regard to visual-imaginative and verbal-

logical thinking of learners are specifically taken into account. 

Culturally established national Sign Languages are not the only forms of 

communication observed between parents and their deaf children. Morford (1996) 

investigated Home Sign as a variant of signing which is often used in families where 

hearing parents have deaf children. Normally the signs in this language do not extend 

beyond the family and are initially mostly pictorial or natural signs. When all family 

members learn these signs, the pictorial component of sign communication is 

reduced, as the pictorial nature of the signs according to Morford (1996) does not 

facilitate learning and memorization. In families where the parents do not speak the 

official Sign Languages of their country, the Home Sign as symbolic language 

plays a very important role. According to Morford (1996), when the critical period for 

language acquisition has arrived, the child begins to perceive the parents' natural signs 

as language information, memorizes them and uses them later to communicate with 

them. However, the vocabulary at home is usually limited and cannot be used in 

communication outside the family. 
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Interdependence between visual-imaginative and verbal-logical thinking 

Visual-imaginative thinking as thinking about visually perceivable objects and models 

or operating with mental images and logical-verbal thinking as operating with 

linguistic and symbolic tools are mutually interdependent in development. Visual 

representations and images are not self-explanatory and can only be interpreted in 

the context of linguistical or other symbolic explanations or experiences. This means 

that preschool children are not only able to interpret visually perceptible pictures in 

children's books but can also understand linguistic-logical relationships in stories, 

even if they are not presented with visible pictures, but told or signed to them about. 

According to Loots et al. (2005), hearing parents who use Sign Language to 

communicate with their young deaf children are much more successful in involving 

their children in communication with the help of symbolic language than parents who 

prefer purely verbal communication (see also Rathmann et al. 2007). Parents who 

practice total communication (all possible ways of conveying information with 

extensive use of natural signs) come close to those who use signs, but they still lag 

behind the group of parents who use sign language in terms of success in exchanging 

symbolic language categories with their children (Khokhlova, 2013). 

As early as 1965 Vernon (2005) has pointed out the heterogeneity of the group of deaf 

children with regard to their cognitive development. He stated that the results of deaf 

children in comparison to hearing children depend on the test methods, qualifications 

and expertise of professionals who are responsible for the diagnosis. Rosanova (1978, 

1991) and Yashkova (1988) also emphasized that the thinking preferences and abilities 

of deaf children vary greatly from individual to individual. Rosanova’s results showed 

that even in the non-verbal tests, the deaf children whose visual-imaginative and 

logical-verbal thinking were harmoniously developed performed better. This must be 

taken into account in the classroom. In addition to fostering language abilities and 

skills in the context of mathematical problem solving, Rosanova (1971, 1978, 1991) 

recommended targeted support for visual-imaginative thinking or the ability to 

visualize mathematical content.  

Yashkova (1988), who had also empirically studied the development of mathematical 

thinking in deaf children, described a model for the development of mathematical 

learning in deaf children, in which visual-imaginative and verbal-logical thinking were 

seen as integral parts of the developmental process. Yashkova's (1988) concept had 

taken gestures and signing into account, but the focus of her research was on the 

fostering of spoken language. Since gestures and signs were not excluded from the 

study, Yashkova's (1988) model can be modified for teaching mathematics in Sign 

Languages and can become a structuring element on the one hand and the subject of 

future didactic research on the other. 
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According to Yashkova's model (1988), even in the early stages of development and 

when solving mathematical problems by operating with objects, the success of 

mathematical development depends on the extent to which children's practical 

activities are embedded in language. Language also plays a special role in the 

transition from operating with models to visual-imaginative thinking which leans not 

on models but on their visual or mental representations. It helps learners to detach 

themselves from concrete objects and to use their pictorial and schematic 

representations of objects, conveyed by signs and gestures, as a basis for reasoning. 

At first, the deaf learners can solve difficult problems with the help of practical actions 

and, if necessary, with the help of adult signers, then, with increasing experience, 

learners develop rational solutions and can express them in Sign Languages in their 

own independent way. Later on, mathematical arguments can already be found in the 

form of visual representations of objects, on the basis of pictures with actions and 

described with the help of productive signs as well as mathematical conventionalized 

signs. 

An important prerequisite for the development of visual-imaginative thinking is the 

development of the ability to differentiate between plans of real objects and models 

that reflect these objects. To this end, the generalization and schematization of 

pictorial representations can first be practiced through Sign Languages, then the 

transitions to the next stages of generalization of images and more complex schemata. 

Sign languages allow the detachment from concrete objects and their pictorial 

representations by enabling the operation with mental images. The models of 

Rosanova (1978) and Yashkova (1988) are based on their extensive experimental 

studies, in which quantitative and qualitative research methods were combined. But 

what can we learn from more recent empirical studies which focus on the use of Sign 

Languages in mathematical teaching?  

Empirical Findings 

To investigate new knowledge about processing of Sign Languages and signed 

numbers in the brain of Sign Language users, psycholinguistic methods and 

neuroscience are used in more recent studies.  

Neurological findings on language processing  

Neville et al. (1998) used functional magnetic resonance imaging (fMRI) to show which 

areas of the brain were activated during the processing of written English or American 

Sign Language (ASL) in deaf signers, hearing signers and hearing non-signers. It was 

found that sign languages were processed differently from written language. All 

groups, hearing and deaf participants, with English or ASL as their preferred 

communication modality, showed strong and repetitive activation in the left 
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hemisphere and thus in the brain areas commonly associated with language 

processing. In addition, hearing and deaf participants who were Sign Language 

oriented showed extensive activation in the right hemisphere, suggesting that the 

specific demands of language also partly determine the organization of language 

systems in the brain. Masataka et. al (2006) focused on the processing of signed 

numbers by deaf sign language-oriented individuals and proposed that “In all, the 

network exists on a non-linguistic basis and functions for the retrieval of arithmetic 

facts from presented linguistic material regardless of the mode of the language, that 

is, a region of parietal cortex underlies an abstract-semantic number sense, and a 

region of left prefrontal cortex underlies more specific operations mediating exact or 

approximate calculation. Particularly, the fact that linguistic representations of exact 

numerical values are controlled in the brain's left hemisphere even in native signers 

should be intriguing.” However, we still know too little about the functions of the brain 

to directly derive from these concrete didactic consequences for the planning of 

teaching processes (Becker, 2006). For this reason, in the next step we will turn to 

more recent findings from the developmental psychology of deaf children. 

Importance of early language support for mathematical development 

Khokhlova (2013) and Bogdanova (2021) summarized recent studies on the role of 

Sign Languages in the communicative, cognitive and social development of deaf and 

hard of hearing children. They found that a number of studies have shown that deaf 

children of deaf parents are not inferior to hearing children in terms of their cognitive 

abilities and that the mastery of Sign Language positively influences the cognitive 

development of deaf children. Sign Languages promote creativity in deaf children, lead 

to a better understanding of spatial relationships and to greater flexibility in problem 

solving.  

Many researchers recognize the need for early acquisition of sign language by deaf 

children. Sign languages can serve as a linguistically symbolic means of 

communication, which is crucial of the first stages of children’s development 

and contribute to the development of the cognitive and personal domain by creating 

the conditions for emotional well-being. Based on the studies, Bogdanova (2021) 

points out the challenges of diagnostics in sign languages. This is exactly where the 

work of Werner and Hänel-Faulhaber (2023) comes in. They are developing tests 

which are appropriate for deaf children.  

Werner and Hänel-Faulhaber (2023) investigated the understanding of repeating 

patterns in deaf and hearing children. The children had to fill in a gap in the patterns. It 

was found that the solution scores of deaf children who learned Sign Languages at an 

early age are comparable to those of hearing children. In contrast, deaf children who 
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learned Sign Languages later are less successful. This shows that Sign Language has a 

positive effect on solving pattern tasks. Earlier studies by Werner (2010) and Werner 

et al. (2019) also indicate that Sign Language support has a positive effect on the 

mathematical development of younger deaf children.  

Santos and Cordes (2022) showed in their studies that deaf children who are not 

exposed to fluent language from birth generally lag behind their hearing peers in 

mathematics. These inequalities occur as early as the age of 3 and can persist into 

adulthood (Kramer & Grote, 2009). The empirical data obtained by Santos and 

Cordes (2022) suggest that limited access to language, especially in the first months of 

life, may create a risk to the acquisition of early number concepts and mathematical 

problem-solving skills. The study focuses on the role of the working memory of deaf 

children in mathematical learning. These results are consistent with the findings of 

Walker et al. (2024) who, in a study with 188 children aged 4.5 to 9 years, discovered 

the relationship between language experiences and children's ability to match number 

signs or number words to Arabic numeral symbols and cardinal numbers. The results 

suggest that early access to language, whether spoken or signed, supports the 

development of age-typical mapping skills and that knowledge of number words is 

crucial for this development.  

An evaluation of a version of the mathematical diagnostic test MBK 0 (test of basic 

mathematical skills at kindergarten age; Krajewski, 2018) in German Sign Language 

(DGS) found that the results of six-year-old deaf native signers correspond to the 

(hearing) age norm (Werner & Hänel-Faulhaber, 2024).  

Sensory experiences through the use of hands when counting 

The potential of sign language-based mathematical support also arises from the fact 

that the use of sign numbers and sign algorithms allows new sensory experiences. For 

example, Di Luca and Pesenti (2011) have shown that the representation of numbers 

as finger-configurations offers children the opportunity to learn and internalize basic 

properties of natural numbers through sensorimotor interactions with the world. 

Recent findings show that adults also use their fingers as a visuomotor support to 

process, represent and communicate numbers, regardless of their hearing status and 

educational background. It has been shown that the use of fingers to prototypically 

represent numbers gives the corresponding finger configurations a special status in 

long-term memory: these configurations are recognized and processed faster than 

other finger configurations and provide direct access to number size, which other 

finger configurations do less efficiently.  

Di Luca and Pesenti (2011) argue that finger-numbers help to acquire, build and then 

access number semantics, and that they provide additional value compared to other 
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number representations by anchoring the meaning of numbers in a culturally shared 

but non-arbitrary and self-experienced sensory-motor representation. 

At this point, however, it is important to note that finger counting as described 

by Di Luca and Presenti (2011) is fundamentally different from the counting systems 

that are integrated into different national Sign Languages as a part of mathematical 

cultural heritage (Fleri 1835, Rainò et. al., 2018). Similar to finger counting, signed 

numbers allow sensory experiences and support short- and long-term memory. But in 

contrast to finger counting, they represent complex mathematical symbols and 

algorithms (Rainòet. al. 2018, Werner & Hänel-Faulhaber, 2024). 

Importance of counting and calculation algorithms in sign languages 

Leybaert and van Cutsem (2002) investigated to what extent the visual-manual 

modality and the structure of the sign number sequence has an influence on the 

development of counting and its use by deaf children. For example, the number 

sequence in Belgian French Sign Language follows a base-5 rule, while the number 

sequence in oral French follows a base-10 rule. To illustrate this special characteristic 

of Sign Languages, we would like to draw your attention to the project 

“Nina im Zahlenland” (Nina in Numberland): https://ksl-msi-nrw.de/de/node/5134 , 

which was created by the team at TU Dortmund University (Math inclusive with PIKAS) 

and the University of Hamburg (MaBaKo-Deaf) with scientific support from Viktor 

Werner. The signed numbers from 1 to 100 can be found there.  

The numbers 11 to 20 in particular differ in various dialects of German Sign Language. 

While the NRW (Nordrhein-Westfalen) variants are used in the “Nina im Zahlenland” 

project, numbers are signed differently in Berlin. The representation of numbers in 

German Sign Language and dialectal differences are discussed in more detail in 

Papaspyrou et. al (2008). Numbers are also signed differently in different national Sign 

Languages, whereby base 5 is retained. For example, Ukrainian Sign Language (UGS) 

also works with base 5. However, base 5 is represented differently in UGS than in 

DGS (German Sign Language), (see Figure 1). 

  



 

 

37 

  
 

Figure 1: Examples for numbers in German and Ukrainian Sign Languages (Copy right: Maike Beyer) 

These examples already indicate the symbolic nature of the signed numbers and the 

complexity of the differences which can affect school children’s understanding by 

transitioning between languages. While in the signed number “six” the number of 

fingers corresponds to the cardinality of the number, in the Ukrainian variant of the 

signed number “eleven” the five fingers of the left hand and the four fingers of the 

right hand of the person signing represent the ten. In Berlin’s version 11 is represented 

with the help of movements (see Figure 10) as you can see later exemplified by Olga 

Pollex (Frau TAUBe). However, the creation of signed numbers, hand configurations 

and movements are not arbitrary, but follows not only linguistical constraints but also 

systematical and logical mathematical rules (cf. Werner et al., 2019).  

Leybaert and Van Cutsem (2002) examined the accuracy and use of the number 

sequences in hearing children aged 3 years and 4 months to 5 years and 8 months and 

in deaf children aged 4 years and 6 years and 2 months. Three tasks were used: 

abstract counting, counting objects and forming sets with a specific cardinality. Deaf 

children showed age-related delays in their knowledge of the number sequence. The 

deaf children's errors were not arbitrary and could be attributed to the rules of sign 

language. They found that deaf children made more errors when they counted up 

to number 6. This is the first time where the additive rule applies in Belgian Sign 

Language. Remarkably, their performance in counting objects and forming quantities 

of a certain cardinality was similar to that of hearing children, although hearing 

children had a longer number sequence. This suggests that deaf children are better at 

counting and number representations than their knowledge of the number sequence 

would suggest. 
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In a comparative study on counting skills in German Sign Language (DGS) and German 

of six-year-old deaf DGS signing and hearing German speaking children, it was shown 

that the use of number signs has a particular influence on the naming of successor 

numbers. The larger the number whose successor is to be named, the more 

consistently deaf children performed. In hearing children, on the other hand, the 

solution rates with German number words decrease. The special number sign 

structure in DGS can therefore support the development of counting skills (Werner 

& Hänel-Faulhaber, 2024). 

In an earlier study, Nunes and Moreno (1998) investigated the use of calculation 

algorithms in British Sign Language (BSL) by deaf children. The errors observed in this 

study by deaf children were systematic errors and not random, incorrect counts. The 

deaf children's errors could be directly linked to the structure of the counting system 

and the algorithm used, just as the errors in written arithmetic were linked to the 

understanding of place value and the mechanics of the written algorithm. These 

results illustrate the effects of a sign system on mathematical reasoning. They show 

how sign numbers influence the arithmetic process of deaf children (Nunes & Moreno, 

1998). Signed algorithms are complex mathematical phenomena. To understand the 

dimensions of the complexity of signed algorithms, we recommend the work on signed 

algorithms in Finnish Sign Language by Rainò et. al. (2018). 

To summarize our report on recent findings we would like to note that the positive 

effect of Sign Languages on learning mathematics by deaf chidren has been empirically 

proven. Sign Languages support short- and long-term memory by allowing additional 

sensory (kinematic) experiences of numbers, number spaces and algorithms. Signed 

algorithms also provide an additional symbolic tool for solving mathematical problems 

and are relevant in the context of cultural affiliation to national Sign Language 

communities. They are complex phenomena that pose a challenge for interpreting 

(cf. Rainò et. al., 2018). Their importance for the successful learning of mathematics is 

difficult to overestimate. 

In addition to targeted language support in the context of mathematical teaching, it is 

important to specifically promote the visual-imaginative thinking of deaf children. 

Following Rosanova (1978) and Yashkova (1988), we use this term to describe the 

ability to interpret mathematical visualizations or models and to mediate them 

supported by languages, to use them to solve mathematical problems and to develop 

them independently using signs. In contrast to Rosanova (1978) and Yashkova (1988), 

we want to place a stronger focus on sign languages.  
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Selected Intervention Studies 

In the following, we will present some examples of selected intervention studies with 
deaf children. Here, too, we make no claim to completeness, but use presented 
studies to mark the need for development of concepts and materials for mathematical 
teaching which implement sign languages. These are primarily the intervention study 
by Nunes and Moreno (2002), its further development by Wille (2018, 2019) and the 
intervention study by Angeloni and Wille (2022).  

Nunes and Moreno (2002) developed an intervention program to promote the 

numeracy skills of deaf children. They compared 23 deaf learners who participated in 

the project with a baseline group consisting of 65 deaf learners who had attended the 

same schools in the previous year. The participating learners were tested before and 

after the intervention with the Nelson Age-Appropriate Mathematics Achievement 

Test. The intervention was delivered by teachers during the time normally allocated 

for mathematics lessons. The learners who took part in the intervention study by 

Nunes and Moreno (2002) did not differ from the control group in the pre-test 

but performed significantly better in the post-test. Nunes and Moreno (2002) came to 

the conclusion that the intervention program effectively promoted the performance 

of deaf learners in arithmetic. Nunes (2004) assumes that deaf children's strengths lie 

in the processing of spatial-visual information. Based on this assumption, she proposes 

teaching materials for four basic arithmetic operations that contain graphic 

representations and questions in written English. 

One of the strengths of the intervention study by Nunes and Moreno (2002) is the fact 

that the tasks, diagrams and task texts are made available to the teachers. However, 

sign language representations of numbers or other technical signs are not integrated 

into the worksheets presented. In this sense, the studies by Wille (2018, 2019) based 

on Nunes and Moreno (2002) have particular theoretical and practical relevance for 

sign language mathematics lessons. In these studies, the concept of Nunes (2004) was 

further developed and sign language explanations were specifically taken into account 

and documented as videos. The studies were tested in the context of specific learning 

groups at an Austrian school in which deaf learners were included. The development 

work was theoretically located in the context of semiotics and taking into account the 

work of Kutscher (2010). The materials developed can be found 

here: http://www.annikawille.de/mathe_in_oegs/mathe_in_oegs.html 

In a study by Angeloni and Wille (2022), multi-modal learning environments with 

videos, worksheets and comics on the Pythagorean Theorem were developed in 

cooperation with Christian Hausch and tested in a group of deaf learners 

(Angeloni & Wille, 2022). The materials can be used in bimodal bilingual lessons and 

contain both sign language and written language explanations and mathematical 

http://www.annikawille.de/mathe_in_oegs/mathe_in_oegs.html
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problems. One of the most important results of the work was the finding that the 

materials offered in Austrian Sign Language were better accepted and processed by 

the participants than materials in written German. At the same time, 

Angeloni and Wille (2022) note a very high workload in the development of teaching 

materials that include Sign Languages. A particular strength of the study is the 

openness to learners' signed explanations and variations. For example, in one task, 

learners are encouraged to complete the parts of the proof of the Pythagorean 

theorem presented as a sequence of pictures using sign language or written language 

and to record them on video (see Figure 2). Here we can see an example of how the 

theoretical proposals of Rosanova (1978) and Yashkova (1988) can be used 

didactically and methodically in the classroom using modern media. It is worth 

emphasizing that in the study not only one, but several proofs of a sentence were 

thematized.  
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Figure 2: Series of pictures on the Pythagorean theorem (Angeloni & Wille 2022) 

One of the interesting results of the study was the observation of the 

difficulties deaf learners had when using geometric terms. For example, they were 

unable to recognize the right angle in the sign when its position was changed, and the 

vertices of the angle were no longer parallel or perpendicular to the ground. In Olga 
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Pollex's suggestions, we will see how these difficulties could be dealt with in the 

classroom or how they could be prevented by making greater use of enactive teaching 

aids and productive mathematical signs, which Angeloni and Wille (2022) refer to as 

classifiers. 

 

Figure 3: Vocabulary used in the intervention study by Angeloni & Wille 2022 

One of the important results of the study is the decision to focus more on Sign 

Languages in future studies and to largely dispense with the written language 
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dimension. The documented feedback and learning progress of learners in the works 

by Wille (2018, 2019) and Angeloni and Wille (2022) show examples of how Sign 

Language teaching materials can be used in bimodal bilingual lessons. However, they 

also show that there is a need for more teaching materials and concepts that 

specifically take Sign Languages into account and link them with other teaching media. 

In the next step, we will give some examples of teaching materials that have been 

developed for deaf children and then turn to some innovative methods and teaching 

materials. 

Examples from Practice and Innovative Teaching Methods 

Before we bring current and innovative examples from the practice of teaching 

mathematics, we will first turn to history and present examples from the teaching 

methodology of Fleri (1835) as well as excerpts from the documents in which tasks 

and methods are presented that were already used in the teaching of geometry in Sign 

Languages in the 19th century (Tabak 2014). We will then look at current textbooks 

for deaf children and then present examples from the lessons of Olga Pollex, head of 

the specialist seminar for “Hearing and Communication” and teacher of mathematics. 

Lessons from history  

The idea of using signs and Sign Language teaching materials in the classroom has a 

long tradition. Fleri (1835), for example, gave a didactic and methodical introduction 

to sign numbers and described some important mathematical signs in one of the first 

sign lexicons. Signed mathematics is first introduced with beans or sticks, then with 

the help of line drawings. It is interesting to note that the sticks are structured in such 

a way that the base 5 can be quickly grasped visually. Fleri (1835) based his 
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considerations on his observations of arithmetic algorithms that deaf people use 

among themselves (see Figure 4). 

 

Figure 4: Introduction of numbers from 1 to 10 (source: Fleri 1835) 

  

Tabak (2014) looked at the mathematical terminology used to teach mathematics 

in Gallaudet University or its predecessor institution Columbia. He has found old 

documents describing examination tasks and teaching methods used for geometry, 

which state: “[Geometric] demonstrations are occasionally made in writing, but the 

usual course is for the student to draw a diagram, and to give the proof by means of 

signs and the manual alphabet, pointing out each angle [and] line…as it is needed in 

the argument” (Nineteenth Annual Report of the Columbia Institution, 1876, p. 5-6). 

This method of teaching clearly required that both faculty instructors and students 

develop a “mathematical extension” of American Sign Language (ASL) sufficient to 

express Euclidean geometry (see Figure 5).  
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Figure 5: Undergraduate courses of mathematics at Columbia Institution (1876) 

Given this description of how geometry was learned and the test questions found in 

the older documents, it is possible that mathematical ASL, at least with respect to 

Euclidean geometry, was as well developed in 1876 as it is today, perhaps even better.  

Unfortunately, we don*t have information how the concrete technical signs were 

documented at Columbia Institution. We only could find the written tasks and can see 

what mathematical content was embedded in Sign Language at that time. Tabak 

(2014) gives some examples of exam questions. Here are two examples from 

geometry:  
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● “Construct a plane triangle, having [been] given the perimeter of the 

angles of the triangle.” (p. 32) 

● Conic Sections: “Prove that perpendiculars drawn from the foci upon 

a tangent to the ellipse meet the tangent in the circumference of a 

circle whose diameter is the major axis.” (p. 32) 

 

Examples of special textbooks 

On the basis of empirical studies and interventions, a series of methodical handbooks 

and special mathematics textbooks for deaf preschool and primary school children 

have been and are being developed and tested in Russia and Georgia, for example. 

Sign language representations of numbers were included in the textbooks (see for 

example Suchova 2002). They are presented alongside numbers in Arabic notation 

and in pictures. For example, there is a picture of ten frogs. The frogs are grouped in 

such a way that the children can recognize patterns (3+3+3 or 3x3) and 9 as a number 

they already know. Another frog which is placed outside of the group of nine increases 

the number up to 10. This gives preschool children the opportunity to get to know the 

number 10 in the context of visual patterns, as successor of the number nine and as 

signed number ten which is known at least to those of them whose parents are signing. 

The signed presentation is at the beginning of introduction to number ten. In the 

following, the children are offered the tasks in pictures or sequences of pictures. The 

tasks are deliberately chosen so that the correct result is not always 10. This means 

that the children have to think, count, calculate and use visuals to solve the problems 

by themselves. The pictures are linked to contexts that the children may be familiar 

with from their everyday lives. 

Newer Russian textbooks like “Mathematics 2” (2023) or those which are aimed at 

older deaf children, contain pictorial-schematic representations of text problems as 

well as adapted simplified texts in Russian. Similar textbooks for deaf children were 

developed for deaf children in Berlin in the 1970s and tested in special schools for deaf 

learners.  

As there is a lack of materials with explanations in Sign Languages, which are 

connected to visual aids and mathematical representations, teachers are developing 

materials and methods that can fill these gaps to meet the needs of their 

heterogeneous learning groups of deaf school children. We have thus arrived at a 

point in the didactics of mathematics where school practice is ahead of didactical 

research, and therefore we are turning not only to scientific literature but pose our 

questions to Olga Pollex, whose professional expertise and experience lies in the 

intersection of didactics of sign languages and mathematics.  
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Olga Pollex is an experienced teacher trained in mathematics and special education 

and is also the head of a seminar for young teachers for the deaf. In the following, we 

quote written statements from correspondence and conversations with Olga Pollex. 

In the context of ethnographic research methodology, we decided to present original 

excerpts from Olga Pollex's arguments and recommendationsfor teaching. These are 

enriched with concrete teaching examples which are intended to serve as a source of 

inspiration for teachers in practice and a treasure trove of ideas for Design Based 

Research in mathematical education of the deaf learners.  

Innovative teaching methods using selected examples 

As a specialist with theoretical and practical knowledge, Olga Pollex is firmly convinced 

that “wordless”, “language-free” and even “language-poor” teaching materials are not 

sufficient to teach deaf children in mathematics in the long term:  

“To understand and explain processes in math, you need language. I often find that 

language is underestimated and omitted in mathematics lessons. School children 

are then able to understand certain task formats through frequent practice, but they 

are unable to understand the processes behind them. For this reason, there are often 

problems with understanding and explaining their own calculation methods and 

algorithms.  

The solutions are often developed by copying the calculation methods without 

understanding why this is done in a certain way. Mathematical tasks which foster 

problem-solving, transferring one's own knowledge and transfer tasks are important 

parts of math lessons. I often observe that math lessons for deaf children focus more 

on mechanical arithmetic, where aspects of the mathematical language are 

underestimated.  

The Sign Language skills of teachers and learners certainly play a role here. In order to 

avoid Sign Language, mathematics lessons are often focused on automating skills 

(reproducing exercises). Language is needed to recognize mathematical structures, 

relationships, to link knowledge and skills and to transfer these to unfamiliar problems. 

To illustrate her thoughts on the topic of Sign Languages in mathematics lessons, Olga 

Pollex applies the model used in school-oriented STEM-project called SINUS. By doing 

this she analyses challenges teachers and school children have when it comes to the 

use of German Sign Language (DGS) in mathematical lessons.  

In the Figure 6 we will summarize the levels of used language translated into English. 

It is important to note that the levels are interlinked and interrelated. 

Positive developments at one level can lead to progress at other levels. Conversely, 

difficulties and developmental delays at basis level like the “everyday language”, for 
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example, can affect the development at other levels and mathematical development 

in general. 

 

Mathematical symbolic ¾ 

Mathematical terminology fractions 

“Mediating” language of 

instruction 
part of the whole 

Everyday language slice of pizza 

  
Figure 6: The levels of used language (Retrieved from: 

https://www.schulentwicklung.nrw.de/sinus/upload/Publikationen/Ma5-10_38_Heft_04-05.pdf) 

  

The difficulties that we teachers of deaf sign language-oriented children encounter in 

the classroom are based on the sign language skills of the teachers and the learners. I 

would now like to discuss this separately. 

The language competence of the learners: 

Deaf learners with language deprivation, who had no possibility to learn Sign 

Languages at home already have difficulty with “everyday language” in Sign Language 

when they come to school. When they come to school, language work generally has to 

be done. “Mediating” language of mathematical instruction is a level which can 

be too high for these children.  

However, deaf learners who have appropriate Sign Language skills according to their 

age from home are capable of everyday Sign Languages. I could very often experience 

that “mediating” language of mathematical instruction in German Sign Language is 

accessible for them. 

The language skills of the teachers: 

It is of course a challenge for many teachers to teach the subject of mathematics in 

Sign Languages. If there are sign-language-oriented children in the group, I think it is 

important that it is taught in German Sign Language and that not only spoken 

language, which is supported by single signs, is used. It is also important that many 

productive signs and the signing space are used in the subject like mathematics.  
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Suggestions for promoting and compensating for sign language skills in Mathematics 
lessons 

My suggestion for teachers and also for the learners is, on the one hand, greater 

consideration and interconnection of the enactive, iconic and symbolic levels 

(according to Bruner) and increased use of productive signing, which is directly linked 

to enactive actions and iconic representations.  

Teachers often ask me about technical terms. These signs are very important. 

However, if we look at the model in Figure 6, mathematical terminology comes in on 

the third level after everyday language and “mediated” language of instruction.  

  

   

 
Figure 7: Sides, edges, squares and corners for 2-D and 3-D figures (Copy right: Frau TAUBe) 

  

To enable access to mathematics, increased use of productive gestures and the gesture 

space is important. Only then could special signs as signed mathematical terminology 

be introduced and then represented using the symbolic language of mathematics.  
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I often observe that teaching is done in German Sign Language, but in a linear way. 

This means that signs are simply strung together without using the space and 

productive signs. We should try to get away from arranging the signs in a one-

dimensional sequence and really work more spatially with signs. It brings many 

advantages in math lessons. The use of space is not easy to represent on 2D 

worksheets, but I try to transfer the multidimensional and dynamical structures of the 

signs to design of the worksheets. Here is an example of productive signs (Figure 7). 

For specialist signs, such as the sign that corresponds to the mathematical term 

“square”, it is important to show several variants and to be open for variations of the 

sign the learner can suggest. After different signs are introduced and discussed in the 

classroom the learners and teachers can decide together which sign should be used as 

a fixed variant in the particular classroom (Figure 7). 

  

 
It can also be helpful to give all 

the central terms together at 

the same time so that the 

learners can see similarities 

and differences at a glance. 

The example in the illustration 

on the left is about different 

geometric surfaces and the 

number of their sides and 

corners. In this way, the terms 

are not only embedded in 

context, but also in a small 

exercise. The terms can thus be 

immediately incorporated into 

the linguistic repertoire of the 

teachers and the learners. 

 
What is also special about this 

worksheet? Geometric 

visualizations, gestures and 

words are linked directly in the 

learner's field of vision, which is 

in line with the theory of 

Rosanova (1978) 

and Yashkova (1988) and our 

extension of their model. 
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It can also be 
helpful to give all the central 
terms together at the same 
time so that the learners can 
see similarities and differences 
at a glance. The example in 
the illustration on the left is ab
out different geometric surfac
es and 
the number of their sides and 
corners. In this way, the terms 
are not only embedded in 
context, but also in a 
small exercise. The terms can 
thus be 
immediately incorporated into
 the linguistic repertoire of the 
teachers and the learners.  

 What is also special about this
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gestures and words are 
linked directly in the learner & 
apos;s field of vision, which is 
in line 
with the theory of Rosanova 
(1978) and Yashkova (1988) 
and 
our extension of their model.  

 

 
Figure 8: Corners and sides for 2-D and 3-D figures 

 

 Pythagoras Theorem: Example for use of productive signs  

To illustrate how productive gestures can be used in lessons, I would like to look at an 

example from my lessons, namely the introduction of the Pythagorean theorem by 

linking actions and gestures. The illustrations from the Sign2MINT database (Barth et. 

al., 2022) show technical language descriptions of the theorem, which also illustrate 

equality of area in the conventionalized version with the help of the corresponding 

hand shapes and execution points.   
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Figure 9: Specialized gesture for PYTHAGORAS THEOREM (c) Sign2MINT@Max Planck Foundation 

 

Looking back to my introduction of Pythagoras Theorem I suggest to start with actions 

or working on enactive level. I gave my learners the possibility to experience the 

equality of the sum of the areas by experimenting with paper figures. That is how they 

can figure out with help of concrete examples from paper that the squares of 

the cathets and the square of the hypotenuse have the same values in these particular 

cases. They could cut and cover the areas using a few examples. The situation 

experienced on the enactive level should then be described by the learners in their own 

sign language. Through the narrative, which included productive signing, they were 

also able to understand the law again and transfer it to other factual tasks that could 

be solved with the help of Pythagoras' theorem.  
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By introducing the learners to the Pythagoras Theorem through acting and signing, 

they were later able to understand technical signs and the proposition of the Theorem 

formulated in the technical signs.  

It is not only geometry that offers the possibility of linking productive signs with 

actions. Here I would like to look at a few more examples / topics to discuss language: 

Numbers over 10 

It is possible to introduce to sign language and its mathematical symbolics by using 

numbers. Up to numbers 10 the signs for numbers are concrete. The number of fingers 

in the signed number from 1 to 10 represents the number. The number 11 and bigger 

use hand movements as symbolic parts of the signs to represent tens. 

 

Figure 10: Two variants for signed eleven used in Berlin (Copy right: Frau TAUBe) 

 

There are dialects in Germany. The Berlin version of the numbers “11” and “12” is 

mathematically confusing. The number 11 is tapped with the thumb and index finger 

and is often confused with 12.  Number 12, where the thumb taps the index and middle 

finger. It is therefore confused with 13. And here, as a math teacher, you are faced 

with a decision. Do I follow linguistics and show the Berlin signs, as I teach in Berlin? 

Or do I better adopt the version where the numbers 11 and 12 are “shaken” just like 
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the numbers 13-19? I always show both versions and then always take the “more 

complicated” 11 and 12. To school children with language deprivation syndrome or 

learning difficulties I show other versions. I often leave it up to the children which 

version they can use. I also always tell them that the numbers are signed differently in 

Germany and other countries in order to create flexibility. 

When dealing with numbers, it is important to me to incorporate aspects of fostering 

abilities to communicate in German Sign Language into math lessons.  For me it is 

important to pay attention to the correct use of parameters when presenting technical 

signs and numbers as shown in the example in Figure 11. Correct execution is circled in 

green, while incorrect execution of numbers is shown in the red circles. 

 
Figure 11: Lexically right way to sign a 7 in DGS (green) and typical mistakes (red), (Copy right: Frau TAUBe) 
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Arithmetic over 10 

To give an example for first signed calculation I would like to refer to the interesting 

experience with doubling singed algorithms which can help with arithmetic for 

beginners. You sign both numbers in the air. Both fives are bundled together to form a 

10 and the remaining numbers are added.  

  

 

Figure 12: Signed doubling algorithm (Copy right: Frau TAUBe) 

 

However, it becomes difficult, for example, when calculating 9+5. Ten fingers are no 

longer enough. So, you have to operate with mental number concepts in your head 

without using hands. I have observed that learners who mouthed numbers were able 

to fix number names in this way and to continue counting in their heads supported by 

mouthing numbers leaning on symbolical aspects of number line. For learners who 

were signed without mouthing of number names found it difficult to continue. But 

these are just my observations, and I can't say that this is the general rule. In any case, 

it's a frequent observation, that is why I also integrate practicing of mouthing of 

numbers in German into my lessons. 
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Examples from combinatorics 

Just to give an idea what could be important by teaching combinatorics I would like to 

refer to my experience with teaching lessons in combinatorics called “Permutation, 

variation and combination”. The structure of my teaching units is described in the 

Figure 13. 

 

Figure 13: Structure of the teaching unit “Permutation, variation and combination”.  (Copy right: Frau TAUBe)  
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Structure of the lessons: 

 Mathematical content Organization of the lesson 

Lesson 1 Variation with repeat 

Introduction to History (Fridolin wants the kiss) 
 
Task: We pick the lock 
 
Activity: Set 2 of 3 symbols correctly in a certain 

order in the lock 
 

Lesson 2 Variation without repeat 

Task: Build different Lego towers 
 
Activity: build a Lego tower made of 2 pieces from 

3 building blocks with one colour each 
 

Lesson 3 

Combination without repeat 
 

 
Combination with repeat 

Task: Offer as many ice cream combinations as 

possible for the princess 
 
Activity: Choose 2 types from 3 types of ice cream 

scoops 
 
Activity: Choose 2 different types from 3 types of 

ice cream scoops 
 

Lesson 4 Permutation without repeat 

Task: design the crown for Fridolin in as many 

different ways as possible 
 
Activity: Choose 3 rhinestones in a certain order 

from 3 varieties and glue them to the crown 
 

Lesson 5 

Variation without repeat 
 

 
Permutation without repeat 

Task: Decorate the princess's dress with the 

buttons as differently as possible 
 
Activity: Choose 2 buttons in a specific order from 

3 varieties 
 
Activity: Attach 3 buttons in a specific order of 3 

varieties 
 

Lesson 6 Cross 

Task: Choose clothing for Fridolin from 2 pants 

and 3 pockets 
 
Additional task at the enactive level: 
Developing combinations of scarf and hats 
 

Figure 13b: Translation of figure 13 
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Tasks and problems from combinatorics require linguistic understanding. I was unsure 

whether my group of young learners would understand the tasks. Learners with high 

abilities in German Sign Language understood very quickly the problems and their fine 

variations. To involve learners which have certain difficulties with German Sign 

Language I had to demonstrate the meaning of the tasks by actions and derived 

productive signs from these actions. I then realized that almost all of the pupils were 

able to understand the tasks and problems well and were able to work on them mostly 

independently and in group work. At the end, they were always able to explain to me 

how they found the combinations which were described in the problems. Figure 

14 gives an example of explanation in German Sign Language documented partly on 

the work sheets.  

 

Figure 14: Worsheet: Watch out! The code may be repeated. (Copy right: Frau TAUBe) 

  

As we already have seen in the examples for combinatorics problems which are 

formulated as written texts but also signed story problems can be very challenging for 

learners with language deprivation. I would like to end with some observations of story 

problems formulated as written text or signed.  
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Story problems 

Talking about story problems, I would like to refer to the seminar conducted by Viktor 

Werner which leaned on his theoretical and practical expertise. In this seminar 

teachers were given the task of translating the text of mathematical problems in 

written German into German Sign Language. By trying to translate the problems 

teachers noticed that their signed version very often included a solution or at least 

parts of it. I have therefore come to the following conclusions for myself and teacher 

students I am working with: “When translating, make sure that challenging aspects 

don’t’ disappear from the problem. In addition, develop your own tasks and 

problems directly in German Sign Language, because the linguistic structure of 

signed languages is different from the spoken and written language. Problems which 

are originally conducted in sign languages use signing more naturally. I am dreaming 

of my own task pool in German Sign Language (QR with access to sign language 

videos). Maybe it will come about. The signed problems in the Advent calendars are 

the first steps.” 

At the same time, it is important that we also provide access to written language and 

practice reading skills. You always have to decide whether you only want to discuss 

mathematical problems or whether you also want to practice using German. For us, 

it's always a double task. Dealing with signed problems or text problems is a huge topic 

in itself. I hope that will address this didactically challenging topic separately at 

another point in the future.  

The bottom line is this: Mathematics and language are closely linked. And in order to 

give deaf children access to mathematics, it is necessary to provide them with linguistic 

tools.  

Closing the practical considerations and examples provided by Olga Pollex we 

recommend her teaching materials, which can be found 

here: Frau TAUBe | Unterrichtsmaterialien bei eduki.com 

We would like to follow on from Olga Pollex's conclusion and move on to the 

explanations in which various areas of mathematics are discussed in sign languages. 

  

https://eduki.com/de/autor/357784/frau-taube
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Outlook on the Didactics of Algebra, Geometry and Stochastics in Sign 
Languages 

In this chapter of the handbook, we have taken a look at the theory and practice of 

teaching mathematics, and in the last section we have seen a number of excellent 

concrete examples from different areas of mathematics. These examples show 

impressively how mathematics and Sign Languages can be linked. In the following 

chapters, research results from didactics of mathematics that take into account the 

special needs of deaf learners are presented. In Dialog between researchers and 

practitioners we would look for new ways to link algebra, geometry and stochastics 

lessons on both a theoretical and practical level. The mathematical tasks or problems 

developed by Sign Language teachers and researchers in video format can be 

supplemented and used as tools for diagnosing and promoting vivid-imaginative and 

verbal-logical thinking with objects, pictures and animations as required.  

Before we move on to more specific examples of how this can be done in the 

classroom, we would like to look at more specific empirical findings that provide 

empirical evidence of the importance of mathematical support in sign languages. We 

will ask ourselves for example very concrete what does “visual-imaginative” exactly 

mean in the context of geometry. At this point, it should be briefly mentioned that it 

is about the ability to use images, sketches and models that can be perceived visually 

or through other senses, initially as supports and mediators for mathematical thinking 

and reasoning, and then to gradually detach oneself from them and operate with 

invisible or sensually imperceptible images mediated by signs or words. 

 

Terminology (Mathematics) 

Terminology table can be found in the appendix Terminology (Mathematics). 
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Appendix 

Terminology (Mathematics)  
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2

D
 an

d
 

in
 3

D
 

                

Th
e 

co
rn

er 
o

r 
vertex 

is 
a 

d
istin

ct 
p

o
in

t 
o

f 
th

e 
b

o
u

n
d

ary 
lin

e 
o

r 
b

o
u

n
d

ary su
rface o

f a p
lan

e figu
re o

r 
th

ree
-d

im
en

sio
n

al so
lid

.  

    Th
e 

co
rn

ers 
o

f 
tw

o
-d

im
en

sio
n

al 
p

o
lygo

n
s are th

e p
o

in
ts at w

h
ich

 th
e

 
sid

es m
ee

t.  

    Th
e 

vertices 
o

f 
th

ree
-d

im
en

sio
n

al 
so

lid
s are p

o
in

ts w
h

ere at least th
ree 

p
lan

es m
ee

t. 

 Fo
r 

exam
p

le, a 
trian

gle 
h

as th
ree co

rn
ers.  

In
 

o
u

r 
illu

stratio
n

 
th

e 
co

rn
ers o

f th
e

 trian
gle are 

m
arked

 w
ith

 letters: 
, 

, an
d

 
.  

Th
ree 

sq
u

ares 
m

eet 
in

 
every vertex o

f th
e cu

b
e.  

Th
e 

cu
b

e 
h

as 
eigh

t 
vertices.  

 

 

 

C
o

p
yrigh

t: Frau
.TA

U
B

e, Tin
o

 Sell, Sw
etlan

a N
o

rd
h

eim
er 
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5 

P
yth

ago
rean

Th
eo

rem
  

In
 

a 
righ

t-an
gled

 
trian

gle, 
th

e 
area 

o
f 

th
e sq

u
are b

u
ilt o

n
 th

e
 

h
yp

o
ten

u
se

 (c) is 
eq

u
al 

to
 

th
e 

su
m

 
o

f 
th

e 
areas 

o
f 

th
e 

sq
u

ares 
b

u
ilt 

o
n

 
th

e cath
ets. (a an

d
 b

): 

.  

Fo
r exam

p
le, in

 a righ
t-

an
gled

 trian
gle w

ith
  

h
yp

o
ten

u
se

  

  

an
d

 cath
ets 

 
 an

d
 

is tru
e:  

  

 

C
o

p
y righ

t: Sw
etlana N

o
rdh

eim
er 
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6
 

B
ase 5

 
In

 G
erm

an
 Sign

 Lan
gu

age, an
d

 
so

m
e o

th
er sign

 lan
gu

ages, th
e 

n
u

m
b

ers 1 to
 5

 are rep
resen

ted
 

w
ith

 
th

e 
d

o
m

in
an

t 
h

an
d

. Th
e 

n
u

m
b

er 
o

f 
fin

gers 
rep

rese
n

ts 
th

e 
co

rresp
o

n
d

in
g 

card
in

al 
n

u
m

b
er. 

If 
th

e 
n

u
m

b
er 

6 
is 

reach
ed

 
in

 
th

e 
n

u
m

b
er 

seq
u

en
ce, it is rep

rese
n

ted
 as 5

 
w

ith
 

th
e 

n
o

n
-d

o
m

in
an

t 
h

an
d

 
an

d
 1

 w
ith

 th
e d

o
m

in
an

t h
an

d
. 

Sim
ilarly, 

th
e 

five 
in 

G
erm

an
 Sign

 Lan
gu

age 
m

u
st 

also
 

b
e 

rep
rese

n
ted

 
w

ith
 

th
e 

n
o

n
-d

o
m

in
an

t 
h

an
d

 
fo

r 
th

e 
n

u
m

b
ers 7, 8, 9 an

d
 10, w

ith
 

b
o

th
 

h
an

d
s 

rep
rese

n
tin

g 
a 

5
 

fo
r th

e 1
0

. 

O
u

r illu
stratio

n
 sh

o
w

s th
e

 n
u

m
b

ers 
6

 
an

d
 

1
1

 
in

 
G

erm
an

 Sign
 

Lan
gu

age
 an

d
 

U
krainian

 
Sign 

Lan
gu

age. 
In

 
U

krain
ian

Sign 
Lan

gu
age

 b
o

th
 th

e n
u

m
b

er 
6, an

d
 th

e n
u

m
b

er 1
1

 refer to
 th

e
 

b
ase 5.  11

 is rep
resen

ted
 b

y 5 +
 5

 
+1

. O
n

e 
5

 
is 

rep
rese

n
ted

 
b

y 
th

e
 

n
o

n
-d

o
m

in
an

t h
an

d
. A

n
o

th
er 5

 is 
rep

rese
n

ted
 th

ro
u

gh
 fo

u
r fin

gers o
f 

th
e 

d
o

m
in

an
t 

h
an

d
 

to
geth

er, w
ith

 o
n

e 
fin

ger exten
d

ed
 fo

r 
th

e 
1

.  
Th

e 
rep

rese
n

tatio
n

 
o

f 
th

e 
1

0
 

in
 

U
krainian

 
Sign

 
Lan

gu
age 

is 
p

artly sym
b

o
lic, as 4 

fin
gers 

to
geth

er 
sym

b
o

lically 
rep

lace 
n

u
m

b
er 5

. 

      C
o

p
y righ

t: M
aike B

eyer 
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7 

D
ialectal sign

 
variatio

n
s as 

so
u

rce 
o

f 
co

n
fu

sio
n

   

D
u

e to
 th

e d
ialects 

o
f 

n
atio

n
al 

sign
 

lan
gu

ages, d
ifferen

t 
sign

ed
 

n
u

m
b

ers 
can

 
exist 

an
d

 
b

e
 

kn
o

w
n

 
to

 
th

e
 

learn
ers. 

Th
e d

ifferen
ces can

 
cau

se 
co

n
fu

sio
n

 
w

ith
 m

ath
em

atical 
ru

les.   

      

In
 th

e B
erlin

 d
ialect, th

e n
u

m
b

ers 1
1

 an
d 

12
 are 

m
ath

em
atically 

co
n

fu
sin

g. 
In

 
th

is 
d

ialect, 
th

e 
n

u
m

b
er 

1
1

 
is 

rep
resen

ted
 b

y tap
p

in
g th

e 
th

u
m

b
 an

d
 

in
d

ex 
fin

ger to
geth

er. 
1

1
 

is 
o

ften
 

co
n

fu
sed

 
fo

r 
1

2
. 

Th
e n

u
m

b
er 1

2
 is rep

rese
n

ted
 b

y tap
p

ing 
th

e 
th

u
m

b
, 

in
d

ex, 
an

d
 

m
id

dle 
fin

gers 
to

geth
er. 1

2
 is o

ften
 co

n
fu

sed
 fo

r 
1

3
. 

To
 avo

id
 th

ese
 co

n
fu

sio
n

s, 
o

n
e 

o
p

tio
n

s 
to

 rep
rese

n
t 1

1
 an

d
 1

2
 th

e sam
e as 1

3
 –

 
1

9
, w

h
ich

 is b
y sh

akin
g th

e
 n

u
m

b
er w

h
ich

 
is 

ad
d

ed
 

to
 

10. 
W

h
en

 
u

sin
g 

sim
p

lified
 

o
r 

altern
ate 

versio
n

s o
f n

u
m

b
ers fo

r clarity, it is also
 

im
p

o
rtan

t 
to

 
sh

o
w

 
th

e 
lin

guistically 
co

rrect 
versio

n
. 

Fo
r stu

d
en

ts w
ith

 
lan

gu
age 

d
ep

rivatio
n 

syn
d

ro
m

e 
o

r 
learn

ing 
d

ifficu
lties, altern

ate 
versio

n
s o

f 
sign

s m
ayb

e m
o

re
 effective.  

 
Sim

p
lified

 versio
n (C

op
y righ

t: Frau.TA
U

B
e

) 

 
Lin

gu
istically co

rrect version
 (C

o
p

y righ
t: Frau

.TA
U

B
e) 
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8
 

Su
cce

sso
r 

Th
e 

su
ccesso

r 
is 

th
e 

n
ext 

largest 
n

atu
ral n

u
m

b
er. 

Th
e su

ccesso
r o

f 5
 

is 6
.   

 

Th
e relatio

n
sh

ip
 o

f a su
ccesso

r can
 b

e
 illu

strated
 w

ith
 n

u
m

b
er lin

e. 

9
 

D
o

u
b

lin
g 

algo
rith

m
  

D
o

u
b

lin
g 

algo
rith

m
 

u
ses a b

ase h
an

d
sh

ap
e 

‘5
’ as 

a n
u

m
b

er 
lin

e 
in

 
G

erm
an

 
Sign

 
Lan

gu
age 

to
 

m
ake 

calcu
latio

n 
easier.  

Fo
r 

exam
p

le, 
to

 
d

o
u

b
le 

6
, b

o
th

 
n

u
m

b
ers are sign

ed
 

in
 th

e air. B
o

th
 fives 

are 
b

u
n

d
led

 
to

geth
er to

 fo
rm

 a 
1

0
 

an
d

 
th

e
 

rem
ainin

g n
u

m
b

ers 
are ad

d
ed

.  
 

C
o

p
y righ

t: Frau.TA
U

B
e 
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10
 

Sign
ed

 algo
rith

m
s 

D
eaf 

p
eo

p
le 

u
se 

fin
gers, b

o
th

 
h

an
d

s an
d

 th
ree

-d
im

en
sio

n
al 

n
eu

tral sp
ace system

atically to
 

ad
d

, 
su

b
tract, 

d
ivid

e, an
d

 
m

u
ltip

ly.  

  Fin
gers, h

an
d

s, an
d

 

th
eir m

o
vem

en
ts in

 sp
ace h

ave 
sp

ecial 
ro

les 
w

h
ere

 each
 elem

en
t is u

sed
 as a 

b
u

o
y 

w
h

en
 

calcu
latin

g 
an

d 
an

ch
o

rin
g. Fo

r 
exam

p
le, visu

al 
rep

rese
n

tatio
n

s 
o

f to
tals 

an
d

 
su

b
to

tals su
p

p
o

rt m
en

tal 
calcu

latio
n

s. 

C
alcu

lating 3
 x 8

 
in

 
Fin

n
ish

 
Sign 

Lan
gu

age 
an

d
 

o
th

er exam
p

les 
are 

d
escrib

ed
 

b
y R

an
o

 (2
0

1
8

)  

 

 

C
alcu

lating 3 x 8 in
 Fin

SL (C
o

p
yrigh

t: R
an

o
, 2

0
1

8
) 
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11 

  
Didactical terms (mathematics) 

Extended model for mathematical development of deaf learners 
based on Yashkova (1988) and Rozanova (1971/1978, 1991) 
with a focus on Sign Languages. Developed in cooperation 
with Olga Pollex, Swetlana Nordheimer and Viktor Werner 

  
1. Visual-active level 

• Understanding abstract concepts through practical actions 

and mathematical games mediated through sign languages 

 
2. Visual-imaginative level 

• Operating with visual and mental images mediated through signs 

and words. 

  
3. Verbal-logical level 

• Articulating mathematical proofs on different levels of thinking 

(visual actions, icons and symbols) mediated through signs and 

words.  
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1.

V
isu

al-active leve
l 

•
U

n
d

erstan
din

g ab
stract co

n
cep

ts th
ro

u
gh

 p
ractical actio

n
s an

d
 

m
ath

em
atical gam

es m
ed

iated
 thro

u
gh sign

 lan
gu

ages 

P
ro

b
lem

 situ
atio

n 

G
o

al: The ch
icks sh

o
u

ld
 h

ave as m
uch free

 sp
ace as 

p
o

ssib
le. 

R
u

ssisch 
D

eu
tsch 

En
glish

  

П
ер

вая 
стад

и
я 

(н
а

гляд
но

-д
ей

ст
вен

н
о

е 
м

ы
ш

лен
и

е) ф
о

р
м

и
р

уется 
в п

р
о

ц
есе п

р
акти

ческо
й

 
п

р
ед

м
етн

о
й

 
д

еятел
ьн

о
сти

. 
У

ж
е 

в 
ко

н
ц

е 
п

е
рво

го 
го

д
а 

ж
и

зн
и

 
д

ети
 

сп
о

со
б

н
ы

 
к 

эм
о

ц
и

о
н

альн
о

м
у 

п
ер

еж
и

ван
и

ю
 

п
о

тр
еб

н
о

сти
 

реш
и

ть 
н

есло
ж

н
ы

е 
п

р
акти

чески
е 

зад
ачи

, 
ко

то
р

ы
е 

д
ан

ы
 

и
м

 
в 

н
агляд

н
о

й
 

ф
о

р
м

е.  
Ф

ун
кц

и
я 

н
агляд

н
о

-
д

ей
ствен

н
о

го м
ы

ш
лен

и
я 

заклю
чается в п

о
лучен

и
и

 
свед

ен
и

й
 

о
 

скр
ы

ты
х 

сво
й

ствах 
о

бьекта, 
вы

являе
м

ы
х 

в 
хо

д
е 

п
р

акти
чески

х 
п

р
е

о
б

р
азо

ван
и

й
. 

D
ie erste Stufe (an

scha
ulich

-
h

an
dlun

g
so

rien
tiertes 

D
en

ken
) 

b
ild

et 
sich

 
im

 
P

rozess 
d

er 
p

raktisch
en

 
Tätigkeit am

 O
b

jekt.  

B
ereits am

 En
d

e des ersten
 

Leb
en

sjahres 
kö

n
n

en
 

K
in

d
er, 

die 
N

o
tw

en
d

igkeit 
erleb

en, ein
fach

e praktische 
A

u
fgab

en
, 

w
en

n
 

d
iese 

A
u

fgab
en

 
an

sch
aulich

 
fo

rm
u

liert sin
d.   

D
ie 

Fu
n

ktio
n 

d
es 

visu
ell-

h
an

d
lu

n
gsorientierten 

D
en

ken
s 

b
esteh

t 
d

arin, 
In

fo
rm

atio
n

en
 

ü
b

er 
d

ie 
verb

orgen
en

 
Eigen

sch
aften

 
ein

es 
O

b
jekts 

zu 
erh

alten, 
d

ie im
 Lau

fe d
er p

raktisch
en

 
U

m
form

u
n

g zu
tage treten

. 

Th
e first stage 

(visu
al-active 

thin
king

) 
is activated

 
thro

u
gh

 th
e 

p
ro

cess o
f p

ractical o
b

ject 
activity. A

lread
y at the en

d 
o

f 
th

e 
first 

year 
o

f 
life, children

 can e
xp

erien
ce 

the
 em

o
tio

n
al n

eed
 

to 
so

lve 
sim

p
le 

practical 
tasks, w

h
ich

 are given
 to 

th
em

 in a visu
al form

. 

Th
e 

fu
n

ctio
n

 
o

f 
visu

al-
active th

in
kin

g is to o
b

tain 
in

fo
rm

atio
n

 
ab

o
ut 

th
e 

h
id

d
en 

p
ro

perties 
of 

an 
o

b
ject, w

h
ich are revealed

 
in

 th
e co

urse o
f practical 

tran
sfo

rm
ation

s. 

H
o

w
 can

 yo
u

 m
ake

 a fen
ce fro

m
 a re

ctan
gu

lar p
iece o

f 
card

b
o

ard
   o

f a given
 len

gth
 so

 th
at th

e su
rro

u
n

d
in

g 
are

a is m
axim

ized
? 

 

Q
u

elle: Ц
ы

п
л

ята н
а р

ы
н

ке
 в м

е
л

ко
й

 ко
р

о
бке, п

о
чем

у 
о

н
и

 н
е вы

п
р

ы
ги

ваю
т (К

ур
о

чка | Д
зен

 (d
zen

.ru
)) 

Th
is p

ro
blem

 can
 b

e so
lved

 p
ractically b

y ch
ild

ren
, as 

w
ell as adu

lts,  

b
y sim

p
ly b

uildin
g d

ifferen
t fen

ces an
d estim

atin
g th

e 
size o

f th
e area u

sing practical m
ean

s. 

H
o

w
 m

an
y ch

icks can
 fit in th

e sp
ace? 

H
o

w
 m

u
ch

 free sp
ace is th

ere? 

Th
e area can

 also
 b

e m
easu

red
 u

sin
g sq

u
are 

cen
tim

eters, sq
u

are decim
eters o

r o
th

er u
nits. 
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A
d

d
itio

n
al re

m
arks: Fro

m
 th

e b
egin

n
in

g, langu
age p

lays an
 im

p
o

rtan
t role. The

 q
u

estio
n

s are fo
rm

ulated
 an

d
 p

h
eno

m
en

a are 
d

iscu
ssed

 in
 lan

gu
age. Th

ese can b
e video

 or text record
ed

 an
d

 rep
resen

ted
 in ad

d
itio

n
 to th

e p
ictures. In lin

e w
ith H

ein
z (20

00
), 

it can b
e said th

at b
o

th children
's p

ro
blem

 so
lving, an

d scien
tific m

ath
em

atical exp
erim

en
ts in

clu
d

e “dep
ictive

 actio
n

-o
rien

te
d

 
th

in
king”. In this typ

e o
f thin

king, p
ractical p

rob
lem

s are d
escribed

 an
d, in a w

ay, recreated
 an

d m
ed

iated
 b

y lan
gu

age. Th
is app

lies 
n

o
t o

n
ly to

 scien
ce, b

u
t also to

 so
cial p

h
en

om
en

a, w
h

ich
 are often

 em
p

irically stu
d

ied
 and

 q
u

an
tified

 in
 scien

tific d
iscu

ssio
n

. 
Statistical an

d
 lin

guistic to
ols m

easu
re, 

perform
 

an
d

 
recreate

 p
hen

o
m

en
a. 

Th
e 

structu
re 

an
d

 
co

u
rse 

o
f p

ro
blem

-so
lvin

g 
activities d

ep
en

d
s h

eavily o
n the lan

gu
age in w

hich research q
u

estion
s are

 p
o

sed
. Th

e stru
cture o

f th
e visu

al-actio
n

-o
rie

n
te

d
 

p
ro

cesses d
epen

d
s o

n
 th

e lan
gu

age in
 w

hich th
e leadin

g p
rob

lem
 q

u
estio

n
s are form

ulated. In
 this sen

se, it is also
 im

p
o

rtan
t th

at 
sign

 lan
gu

ages can
 h

elp d
eterm

ine the stru
cture o

f pro
blem

-so
lving at sch

o
ols in gen

eral, an
d p

articu
larly in

 scien
ce. 

A
b

stractio
n

 in
 gam

e
s an

d
 h

an
d

s-o
n

 e
xp

e
rim

en
ts:  Even

 in an
 iden

tical situ
atio

n
, the fo

rm
u

latio
n o

f th
e q

uestio
n o

f th
e m

axim
u

m
 

free sp
ace for chicks is structu

red
 d

ifferen
tly in sign

 lan
gu

ages th
an in sp

o
ken an

d w
ritten

 lan
gu

ages. In
 th

e classro
o

m
, sim

ilar real-
life pro

b
lem

s can b
e illu

strated
 in

 stories an
d p

layfu
l situ

ation
s. Fo

r exam
ple, th

e children
 are given

 little chicks an
d asked

 to so
lve 

p
ro

b
lem

s in an
 actio

n
-o

rien
ted w

ay 

 

 

  
C

o
p

y righ
t: Sw

etla
n

a N
o

rd
h

eim
er 

If yo
u

 ch
o

o
se extrem

e exam
p

les, th
e ch

oice b
eco

m
es clear. Th

e area o
f th

e rectangle is sm
all if th

e differen
ce b

etw
een

 th
e sid

es 
o

f th
e rectangle is large. 

O
th

er o
p

tion
s for this p

layfu
l exp

erien
ce co

uld
 b

e co
n

d
ucted

 b
y draw

in
g th

e rectan
gles an

d layin
g th

em
 o

u
t w

ith
 u

n
it sq

uares. The 
teach

er co
u

ld
 also

 bring a large b
o

x in
to

 th
e classro

o
m

 an
d

 h
ave th

e ch
ild

ren
 play w

ith
 little chicks in

side. Th
is activity co

u
ld

 b
e 

d
o

n
e o

u
tsid

e b
y m

arkin
g the b

o
u

n
d

aries o
f th

e b
ase of th

e im
agin

ary b
o

x w
ith

 ch
alk o

r string. This co
u

ld
 give

 th
e

 ch
ild

re
n

 a n
e

w
 

exp
erien

ce o
f sp

ace an
d area. 

P
layin

g req
u

ires ab
stractio

n
. Fo

r exam
p

le, th
e ab

ility to in
terp

ret th
e rectan

gles m
ad

e o
f pip

e clean
ers as fen

ces fo
r ch

icks. 
Tran

sfers b
etw

ee
n the areas of “reality of th

e ch
icks in th

e bo
x”, “p

layin
g w

ith little ch
icks and p

ipe clean
ers”, “m

ath
em

atics”, and 
o

th
er gam

es req
u

ire sign
ed

 explan
atio

n
s for sign

-lan
gu

age
-o

rien
ted

 learn
ers. H

ere, action
s can b

e directly lin
ked

 to pro
d

u
ctive 

sign
s th

at d
escrib

e th
em

. Even
 at th

is level, it is im
p

o
rtan

t to
 u

se co
nven

tio
n

alized
 lexical sign

s to en
ab

le ab
straction

 p
ro

ce
sse

s. 
N

o
t all sign

s or w
o

rd
s u

sed
 for play, storytellin

g, or m
athem

atical co
n

versatio
n

s can be visu
alized

. Th
e sym

b
o

lic fu
n

ctio
n o

f 
lan

gu
age, esp

ecially sign lan
gu

ages, is im
p

o
rtant for successfu

l m
athem

atical develo
p

m
en

t from
 an

 early age. 
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2
.

V
isu

al-im
agin

a
tive

 le
ve

l 

•
O

p
eratin

g w
ith

 visu
al a

n
d

 m
e

n
tal im

ages m
e

d
iate

d
 th

ro
u

g
h

 

sign
s an

d
 w

o
rd

s. 

C
o

n
je

ctu
re

: 

Th
e

 sq
u

are
 h

as th
e largest area a

m
o

n
g th

e  
rectan

gles w
ith

 th
e

 sa
m

e
 p

erim
eter. 

R
u

ssisch
 

D
e

u
tsch

 
En

glish
  

Я
зы

к и
гр

ает о
со

б
ую

 
р

о
л

ь в
 п

ер
ехо

д
е

 к 
н

агл
яд

н
о

-о
б

р
азн

о
м

у 
м

ы
ш

л
ен

и
ю

.  С
н

ачал
а

 р
еб

ен
о

к р
е

ш
ает 

зад
ачи

 с п
о

м
о

щ
ью

 
п

р
акти

чески
х 

д
ей

стви
й

, затем
, п

о
 

м
е

р
е

 н
ако

п
л

ен
и

я 
о

п
ы

та, вы
р

аб
аты

вает 
б

о
л

е
е р

ац
и

о
н

ал
ьн

ы
е

 
сп

о
со

б
ы

 и
х р

е
ш

ен
и

я. 
То

гд
а р

еш
ен

и
е 

п
р

и
н

и
м

а
ется уж

е в
 

ф
о

р
м

е
 

п
р

е
д

ставл
ен

и
й

, н
а

 
о

сн
о

в
е о

б
р

азо
в 

д
ей

стви
й

. В
аж

н
о

й
 

п
р

е
д

п
о

сы
л

ко
й

 
р

азви
ти

я н
агл

я
д

н
о

-
о

б
р

азн
о

го
 

м
ы

ш
л

ен
и

я 
явл

яется ф
о

р
м

и
р

о
-

ван
и

е ум
ен

и
я 

р
азл

и
чать р

еал
ьн

ы
е 

о
б

ъ
екты

, п
л

ан
ы

 и
 

м
о

д
ел

и
, 

о
тр

аж
аю

щ
и

е
 эти

 
о

б
ъ

екты
. П

о
сте-

п
ен

н
о

 д
ети

 учатся 
вы

п
о

л
н

ять 
м

ы
сл

и
тел

ьн
ы

е 
о

п
ер

ац
и

и
 н

а о
сн

о
в

е 
во

сп
р

и
н

и
м

ае
м

ы
х 

о
б

р
азо

в
, н

е 
м

ан
и

п
ул

и
р

уя
 

п
р

е
д

м
ета

м
и

.  

B
eim

 Ü
b

ergan
g 

zu
m

 visu
ellen

-
im

a
g

in
a

tiven
 

D
en

ken
 ko

m
m

t d
er 

Sp
rach

e ein
e

 b
eso

n
d

ere
 

R
o

lle zu
. Zu

n
äch

st lö
st 

d
as K

in
d

 sch
w

ierige 
P

ro
b

le
m

e
 m

it H
ilfe 

p
raktisch

er H
a

n
d

lu
n

ge
n

, 
d

an
n

, m
it zu

n
e

h
m

en
d

er 
Erfah

ru
n

g, e
n

tw
ickelt es 

ratio
n

alere W
ege zu

 
ih

rer Lö
su

n
g. D

a
n

n
 w

ird
 

d
ie En

tsch
eid

u
n

g b
ereits 

in
 Fo

rm
 vo

n
 

D
arstellu

n
ge

n
, au

f 
d

er G
ru

n
d

lage
 vo

n
 

H
an

d
lu

n
gsb

ild
ern

 
getro

ffen
. Ein

e
 w

ich
tige 

V
o

rau
ssetzu

n
g fü

r d
ie

 
En

tw
icklu

n
g

 d
es 

visu
ellen

-im
agin

ativen
 

D
e

n
ke

n
s ist d

ie 
A

u
sb

ild
u

n
g d

er 
Fäh

igkeit, zw
isch

e
n

 
realen

 O
b

jekte
n

, P
län

en
 

u
n

d
 M

o
d

elle
n

, d
ie

 d
ie

se
 

O
b

jekte
 w

id
ersp

iegeln
, 

zu
 u

n
tersch

eid
en

. 
A

llm
äh

lich
 lern

e
n

 d
ie 

K
in

d
er d

ie
 

D
e

n
ko

p
eratio

n
e

n
 

an
geleh

n
t an

 d
ie

 
w

ah
rgen

o
m

m
e

n
e

n
 

Im
ages o

h
n

e
 

M
an

ip
u

latio
n

en
 m

it 
O

b
jekte

n
 

d
u

rch
zu

fü
h

re
n

.  

In
 th

e tran
sitio

n
 to

 
visu

al-im
agin

ative 
th

in
kin

g, lan
gu

ages 
h

ave
 a sp

ecial ro
le. 

A
t first, th

e ch
ild

 
so

lves d
ifficu

lt 
p

ro
b

le
m

s w
ith

 th
e 

h
elp

 o
f p

ractical 
actio

n
s. T

h
e

n
, as 

th
ey 

accu
m

u
late

 e
xp

erie
n

ce
, th

e
 ch

ild
 

d
evelo

p
s m

o
re

 
ratio

n
al w

ays to
 

reach
 so

lu
tio

n
s. 

Th
e

n
, th

e d
ecisio

n
 

is m
ad

e in
 term

s o
f 

rep
resen

tatio
n

s, th
r

o
u

gh
 o

p
eratin

g
 

im
ages. A

n
 

im
p

o
rta

n
t co

n
d

itio
n

 
fo

r th
e

 e
m

erge
n

ce 
o

f visu
al an

d
 

figu
rative th

in
kin

g is 
th

e
 d

evelo
p

m
e

n
t o

f 
th

e
 ab

ility to
 

d
istin

gu
ish

 b
etw

e
en

 
real o

b
jects an

d
 

m
o

d
els reflectin

g 
th

ese o
b

jects.  
G

rad
u

ally, ch
ild

re
n

 
learn

 to
 p

erfo
rm

 
th

o
u

gh
t o

p
eratio

n
s 

b
ase

d
 o

n
 p

erceive
d

 
im

ages w
ith

o
u

t 
m

an
ip

u
latin

g 
o

b
jects.  

P
ro

o
f: 

grap
h

ic 
(ico

n
ic) 

 

Th
e

 
sq

u
are

 
o

u
tlin

e
d

 
in

 
re

d
 

a
n

d
 

th
e

 recta
n

gle o
u

tlin
ed

 in
 b

lu
e

 h
ave th

e
 

sam
e

 
p

erim
eter. 

T
o

 
create

 
th

e
 

b
lu

e
 

rectan
gle, w

e
 sh

o
rte

n
e

d
 o

n
e

 sid
e o

f th
e

 
sq

u
are a

n
d

 len
gth

e
n

e
d

 o
n

e sid
e

 o
f th

e
 

sq
u

are
.  

    

 

If w
e

 p
lace

 th
e

 tw
o

 figu
res o

n
 to

p
 o

f 
each

 o
th

er, th
ey p

artially o
verlap

. 

W
h

en
 

o
verlap

p
e

d
, 

th
ere 

are
 also

 tw
o

 
areas 

th
at 

d
o

 
n

o
t 

o
verlap

. 
W

e
 

call 
th

e
m

 ‘re
m

ain
d

er 
recta

n
gles’. 

Th
e red

 
rem

ain
d

er rectan
gle

 is larger th
an

 th
e

 
b

lu
e

 re
m

ain
d

er recta
n

gle. 
Th

is 
m

ean
s 

th
at th

e
 re

d
 sq

u
are

 is larger th
an

 th
e

 
in

itial b
lu

e
 rectan

gle
.  

Th
e

 state
m

en
t ab

o
ve a

p
p

lies to
 th

e
 e

xam
p

le, as w
ell as to

 all 
rectan

gles.  

It 
is 

th
erefo

re 
u

n
iversally 

valid
. 

Th
e 

im
ag

es 
d

o
 

n
o

t o
n

ly re
p

resen
t sp

e
cific cases, b

u
t all recta

n
gles an

d
 sq

u
ares 

w
ith

 th
e sa

m
e p

erim
eter. H

o
w

ever, th
e

 im
ages are n

o
t self-

exp
lan

ato
ry (W

in
ter) an

d
 o

n
ly acq

u
ire

 th
eir ico

n
ic co

n
te

n
t an

d
 

m
ath

em
a

tical 
sign

ifican
ce 

th
ro

u
g

h
 

lin
gu

istic 
o

r 
sym

b
o

lic e
m

b
e

d
d

in
g. A

cco
rd

in
gly, d

escrip
tive visu

al evid
en

ce
 

m
u

st b
e

 e
m

b
e

d
d

ed
 in

 sign
 lan

gu
ag

e in
 o

rd
er to

 b
e

 m
ea

n
in

gfu
l 

fo
r sign

 lan
gu

age-o
rie

n
te

d
 learn

ers. Id
eally, learn

ers d
etach

 
th

e
m

selves fro
m

 th
e

 co
n

crete
 im

ages a
n

d
 o

p
erate w

ith
 m

e
n

tal 
im

ages o
f rectan

gles (K
ru

teski, W
ittm

an
n

, K
a

d
u

n
z). 
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P
ro

o
fs w

ith
 actio

n
s (en

aktiv)  
  

 
 W

e cu
t o

ut a grey p
ap

er rectan
gle

 an
d

 a 
b

ro
w

n
 p

ap
er sq

u
are. They h

ave the 
sam

e p
erim

eter.  W
e

 w
an

t to
 sh

o
w

 th
at 

th
e b

ro
w

n
 sq

u
are is large

r th
an

 th
e gray 

rectangle. 

 

W
e p

lace th
e rectan

gles on
 to

p o
f 

each
 o

ther and
 co

m
p

are th
e 

rem
ain

in
g area. To d

o
 this, w

e cu
t 

o
ff th

e p
iece o

f th
e gray rectan

gle 
th

at d
o

es n
o

t o
verlap w

ith the area 
o

f th
e sq

u
are.   

 

W
e p

lace th
e cut-o

ff gray rem
ain

in
g area o

n the b
ro

w
n rem

ain
ing area.  

Th
is creates a differen

ce area in th
e sh

ape of a sq
u

are.  
Th

erefo
re, th

e
 area o

f the large b
row

n
 sq

u
are is large

r th
an

  
th

e area o
f th

e
 large gray rectan

gle. 

D
id

actic rem
arks: In th

is activity, th
e action

s w
ith th

e card
b

o
ard rectangles are no

t self-exp
lan

ato
ry. Th

ey are
 o

n
ly m

ean
in

gfu
l in con

ju
n

ctio
n w

ith verb
al 

exp
lan

ation
s. So

m
e lin

gu
istic explan

atio
n

 can be
 rep

laced
 w

ith
 vid

e
o

 re
co

rd
in

gs o
f each step

. H
o

w
ever, vid

eo d
em

o
nstratio

n m
ust still b

e accom
p

anied
 

b
y th

e q
uestio

n, o
r the assu

m
p

tio
n m

u
st b

e fo
rm

u
lated lingu

istically. Fu
rth

erm
o

re, th
e lin

gu
istic fo

rm
u

lation
 can b

e su
p

p
o

rted
 o

r su
p

plem
ented

 b
y algeb

raic 
sym

b
o

lism
. Fo

r exam
ple, in

 h
er textb

o
o

k, K
o

rtad
ze u

ses the to
o

ls o
f algeb

ra to
 fo

rm
ulate m

ath
em

atical statem
en

ts fo
r 1st an

d
 2n

d
 grad

e learners w
ith

o
u

t 
p

h
o

n
etic o

r w
ritten

 lan
gu

age. Such algeb
raic o

r ge
o

m
etric m

ean
s can

, if n
ecessary, m

itigate the n
eed

 fo
r verbal exp

lan
atio

ns. H
o

w
ever, th

ey can
n

o
t rep

lace 
verb

al fo
rm

u
lation

s. It is im
p

o
rtan

t th
at th

e lin
gu

istic fo
rm

ulatio
n

s are percep
tib

le an
d

 u
n

d
erstan

d
ab

le fo
r th

e learn
ers. Therefo

re, the exten
t o

f th
e learn

er’s 
ab

ility to perceive lin
guistic exp

lan
atio

ns visu
ally, au

d
ito

rily o
r tactilely, acco

rdin
g to

 th
eir in

d
ivid

u
al p

erceptu
al cap

ab
ilities, m

ust be clarified
 in ad

vance. 
O

b
se

rvation
 

b
y 

Sw
etlan

a 
N

o
rdh

eim
er: Fro

m
 

m
y 

experien
ce co

o
p

erating w
ith

 teachers 
fro

m
 

d
ifferent 

sch
oo

ls 
an

d 
research

ers 
fro

m
 

d
ifferent 

u
n

iversities, teach
ers an

d
 research

ers are o
ften

 n
o

t aw
are of h

o
w

 m
uch spo

ken
 lan

gu
age they u

se, even in so
-called

 “p
roo

fs w
ith

ou
t w

o
rds” (N

elso
n). In

 
th

ese cases, w
ritten

 versio
n

s are n
o

t alw
ays d

o
cu

m
en

ted
 and

 th
erefo

re are n
o

t accessible to m
an

y learn
ers.  

A
n

d
 last bu

t n
o

t least: H
o

w
 can icon

ic p
ro

ofs b
e m

ad
e accessib

le for d
eaf-b

lin
d

 learners? Tactile sign
in

g and
 tan

gib
le

 teachin
g m

ed
ia can

 be used
 in p

lace o
f 

o
r to su

p
p

lem
en

t oth
er ap

p
ro

ach
es. In this case, w

o
rking w

ith en
active m

ed
ia w

o
u

ld
 be p

articu
larly relevant. Th

e ad
ap

tatio
n

 o
f video

 m
aterials in

 sign
ed 

lan
gu

ages m
ay p

ro
ve ch

allen
gin

g. O
nce th

e q
uestio

ns abo
u

t p
ercep

tu
al p

rereq
uisites h

ave been clarified, th
e n

ext step
 is to

 iden
tify w

h
ich

 lan
gu

ages an
d 

m
o

d
alities are p

erceivable an
d

 un
d

e
rstand

ab
le

 b
y th

e learn
ers an

d
 at w

h
at level. W

ith
 regard

 to
 lan

gu
age

 dep
rivatio

n, it can
n

o
t b

e taken
 fo

r granted
 th

at all 
learn

ers and
 teach

ers h
ave a co

m
m

and
 of sign

 lan
gu

ages at th
e req

u
ired

 level. 
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3.
V

erb
al-lo

gical leve
l 

•
A

rticu
latin

g m
ath

em
atical p

ro
o

fs on
 d

ifferen
t levels o

f thin
kin

g 

(visu
al actio

ns, ico
n

s an
d

 sym
b

o
ls) m

ed
iated

 th
rou

gh sign
s and

 

w
o

rd
s. 

Fo
rm

a
lizatio

n th
ro

u
gh

 m
a

th
em

a
tical sym

b
o

ls 

R
u

ssisch 
D

eu
tsch

 
En

glisch
  

С
л

о
весн

о-л
о

ги
ческо

е 
м

ы
ш

л
ен

и
е

 р
азд

ел
яю

т н
а 

ко
н

кр
етн

о-п
о

н
яти

й
н

о
е

 и
 

аб
стр

актн
о-п

о
н

яти
й

н
о

е 
м

ы
ш

л
ен

и
е. Б

о
л

ьш
ую

 р
о

л
ь 

в со
в

ер
ш

ен
и

и
 

м
ы

сл
и

тел
ьн

ы
х о

п
е

р
ац

и
й

 
и

гр
аю

т о
б

р
азы

, 
о

тр
аж

аю
щ

и
е 

н
еп

о
ср

ед
ств

ен
н

ы
й

 о
п

ы
т 

д
етей

. С
н

ачал
а 

о
б

о
б

щ
ен

н
о

сти
 

п
р

е
д

ставл
ен

и
й

, а
 п

о
то

м
 

тр
ен

и
р

о
вка в п

е
р

е
хо

д
ах к 

сл
ед

ую
щ

и
м

 ур
о

вн
ям

 
о

б
о

б
щ

ен
н

о
сти

 о
б

р
азо

в
, к 

и
х усл

о
ж

н
ен

и
ю

. Н
аи

б
о

л
ее

 
вы

со
кая

 стад
и

я
 –

 
аб

стр
актн

о-п
о

н
яти

й
н

о
е 

м
ы

ш
л

ен
и

е, 
хар

актер
и

зуется 
сп

о
со

б
н

о
стью

 чел
о

ве
ка 

сам
о

сто
ятел

ьн
о

 р
еш

ать 
сл

о
ж

н
ы

е
 п

о
зн

авател
ьн

ы
е

 
зад

ачи
, о

б
о

б
щ

ен
н

о
стью

, 
взаи

м
о

связью
 и

 
о

б
р

ати
м

о
стью

 
м

ы
сл

и
тел

н
ы

х д
ей

стви
й

, 
п

р
о

и
зво

л
ьн

о
стью

 в
 

о
п

ер
и

р
о

ван
и

и
 ко

н
кр

етн
ы

м
 

и
 аб

стр
актн

ы
м

 
м

ате
р

и
ал

о
м

, ум
ен

и
е

м
 

ко
н

тр
о

л
и

р
о

вать 
и

 о
б

о
сн

о
вы

вать св
о

и
 

р
ассуж

д
ен

и
я и

 вы
во

д
ы

. 

D
as verb

a
l-lo

g
isch

e 
D

en
ken

 w
ird

 in
 ko

n
kret-

b
egrifflich

es u
n

d
 ab

strakt-
b

egrifflich
es D

en
ken

 
u

n
terteilt. B

ild
er, d

ie
 d

ie 
u

n
m

ittelb
are Erfa

h
ru

n
g 

d
er K

in
d

er w
id

ersp
iegeln

, 
sp

iele
n

 ein
e

 w
ich

tige
 R

o
lle

 
b

ei d
er D

u
rch

fü
h

ru
n

g vo
n
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Concluding remarks: 
 
At any level of the learners’ thinking development, embedding content through sign 
language is impactful on their mathematical development. The levels are not strictly 
hierarchical. The “ascent” from the practical-action level to the verbal-logical or 
symbolic level of thinking is not the only important factor. Especially in everyday life, 
the problems must be translated back into the non-mathematical world to apply them 
to non-mathematical reality. For example, the construction of the optimal open-top 
box for the chicks can provide practical guidance to the conclusion of the original 
question. The ability to transfer verbal logic to symbolic knowledge or understand 
concepts constructively is foundational to engineering and architecture. The bridging 
of different levels of mathematical thinking and areas of mathematics (i.e. geometry, 
algebra, stochastics etc.) to technical sign languages and didactical aspects is in need 
of further development.
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3. DeafDidaktik-critical View of mathematical Text Tasks 

Staudt, B., Sieprath, H., Karar, E., Baklaci, M., Schmidt, D. & Grote, K. (2024) * 

Competence Centre for Sign Language and Gesture (RWTH Aachen) 

In the context of an empirical study on DeafDidaktik by Staudt (2024) in mathematics 

lessons with deaf students whose first language (L1) is German Sign Language (GSL), it 

was repeatedly observed that working on mathematical text tasks is associated with 

specific comprehension difficulties.  

These issues were discussed and analyzed with the DeafDidaktik-Team at the SignGes 

Competence Centre for Sign Language and Gesture at the RWTH Aachen University 

under the direction of Dr. Klaudia Grote. Based on these considerations, a 

DeafDidaktik adaptation of a text task designed for hearing children was developed, 

resulting in a mathematical text task tailored to the needs of deaf children. To assess 

the efficacy of the adapted task, a preliminary empirical study was conducted, in which 

a 'kangaroo task' was presented to two ten-year-old children: one hearing and one 

deaf.  

Note: The so-called 'kangaroo tasks' are an example of a pedagogical approach that 

originated in the Australian education system and has since been adopted in a 

European mathematics competition. The kangaroo tasks have been employed in 

Australian educational institutions since 1978, with their implementation in German 

schools following 4 years later. The objective of these tasks is to provide support and 

challenge for students in the third and fourth grades regarding mathematical learning 

(for further information, see 

https://www.mathekaenguru.de/international/index.html—09.11.2024).  

 

The text task from the 2021 Kangaroo Competition, which Staudt introduced to the 

schoolchildren in a preliminary study, is as follows: In a modest cinema, five 

companions occupy an entire row. Paul is not seated in the fifth position. Anabel, on 

the other hand, has selected the first seat. Lynn is situated between Joshua and 

Selin. Thus, the question arises as to the precise location of Lynn's seating.  

The hearing child with German as their first language (L1) solved the task promptly 

and accurately. The deaf child, whose first language is German Sign Language (DGS), 

acquired at a relatively late stage, and German, which may be considered a second or 

even third language acquisition due to the Russian migration background of the 

parents, experienced considerable difficulties in reading and understanding the above 

text task. Subsequently, the child was presented with a translation of the task in DGS. 



 

 

78 

The child's feedback and reactions suggest an enhanced comprehension of the signed 

task. Nevertheless, despite the translation into DGS, the child could still not 

comprehend the mathematical methodology for completing the task. 

Subsequently, the child was presented with an animation of the content, designed 

following the principles of DeafDidaktik and edited with the software PowerPoint. 

Immediately following the initial presentation, the child demonstrated an 

understanding of the context depicted. In a second iteration, a brief signed 

explanation of the task was additionally provided, facilitating comprehension of the 

mathematical approach and enabling the child to complete the task.  

 

For the DeafDidaktik-version of the text task, DeafDidaktik-principles had to be 

applied, which required a three-phase DeafDidaktik-analysisin advance. The final 

presentation of the material included videos in German Sign Language (DGS) and 

PowerPoint slides with corresponding animations and transitions, each incorporating 

Principles. These included an inductive style of explanation, subject-object buoys, a 

signed elimination strategy, localization, and changes in perspective. This was 

achieved by applying sign classifiers and, in addition, constructed action (CA) or 

constructed dialogue (CD) (Grote, Sieprath, Staudt, Fenkart & Karar – Work in Progress 

2024). Furthermore, elements of DeafScience were incorporated, including the 

presentation of sign language videos in circular formats with color-coded frames to 

differentiate between them. In this case, the color 'white' represents the introduction 

of the task, 'blue' represents additional explanations, 'red' represents the question, 

and “green” represents the answer or solution (Sieprath et al., 2024).  

This preliminary study indicates that deaf students encounter various challenges when 

solving mathematical tasks in a written form. These text tasksrequire the students to 

employ a variety of decoding procedures or processes, including decoding the 

content, translating the written text into mathematical codes, and solving the 

mathematical problem. 

Considering the findings of this preliminary study, this video presents the initial criteria 

for creating signed DeafDidaktik videos for mathematical tasks. However, it is essential 

to note that these criteria require further empirical investigation in educational 

contexts. 
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4. Signing about Variables and Equations 

Angeloni, F. & Hausch, C. 

Introduction 

Bilingual practice with a sign language and a written language is fundamental in 
teaching sign language-oriented pupils. However, the characteristics of sign languages 
should also be considered in education research (Grote et al., 2018). Over the time 
studies have shown that sign languages can influence the teaching and learning of 
mathematics in such a way that significant differences to spoken language practice 
can sometimes arise. Some recent examples of such studies in mathematics education 
can be found in Krause (2017) and Wille (2020). It has also already been shown, for 
example, that “[...] the use of sign language space in the mathematics class can have 
a decisive function, e.g. [...] in the acquisition of specialist and technical sign language 
signs that do not (only) consist of certain signs for specialist and technical terms of [a] 
spoken language” (translation from Angeloni, 2023, p. 532). 

In this chapter, basic notions and concepts of elementary algebra – such as “variable”, 
“equation”, etc. – are considered from a sign language perspective based on results of 
a broader project on teaching and learning elementary algebra in a sign language (cf. 
Angeloni et al., 2022; 2023). In the first section, the investigated variable aspects and 
a central property of sign languages, iconicity, in mathematics are presented. Then, 
key principles for teaching in a sign language and the learning environments that were 
used in the project are presented. Selected results on the object aspect, the 
substitution aspect and the shell aspect of variables are explained and possible 
implications for mathematics teaching are discussed. Unless otherwise stated, the 
signs presented here are signs of Austrian Sign Language (ÖGS). 

Variable Aspects   

Variables are various and can be viewed from different points of view: Object aspect, 
substitution aspect, calculus aspect (Malle, 1993) and shell aspect (Wille, 2008). Under 
the object aspect, a variable is defined as an unknown or unspecified number (Malle, 
1993, p. 46). According to the substitution aspect, a variable functions as a placeholder 
in which numbers may be inserted (Malle, 1993, p. 46). The placeholder vanishes when 
a number is assigned to it. This placeholder remains under the shell aspect that means 
a variable is like “a cover or a box for the number but it is still here” (Wille, 2008, pp. 
422-423). According to the calculus aspect, a variable can also be only a sign “with 
which one may operate according to certain rules” (translation from Malle, 1993, p. 
46). Here we examine how these different variable aspects could be related to each 
other. 
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Iconic Sign Language Signs in Mathematics  

 

                                        

                Fig. 1a                Fig. 1b           Fig. 1c                            Fig. 1d                               Fig. 1e       

Figure 1. Iconic signs of ÖGS in mathematics 

 

Iconicity is a property common to all sign languages. Signs that show a direct or 
indirect similarity to the referred are iconic signs. In the first case, the signs are defined 
as pictorial, in the second case as schematic icons (Kutscher, 2010). According to 
Kutscher (2010), pictorially iconic signs are divided into those whose hand shape 
resembles the shape of the referred and those in which the movement path of the 
sign resembles the shape of the referred: One example is the sign in Figure 1a, in which 
the shape of the hands resembles the round brackets around a term. Another example 
is the sign in Figure 1b, in which the movement path of the index finger of the right 
hand imitates the shape of a round bracket. Wille, who theorizes as Kutscher iconicity 
according to Peirce, distinguishes further between “mathematical signs in which the 
movement path imitates an action on mathematical inscriptions” (translation from 
Wille, 2020, p. 206) and give as an example the sign ROUND-OFF in Figure 1c (drawn 
from Wille, 2020, p. 207). 

The indirect similarity to the referenced is not realized by the schematic icons through 
the hand shape or the movement path, but via schemata: “knowledge structures [...] 
that make it possible to interpret experiential data according to cognitively anchored 
standard patterns of objects, events, situations or action sequences” (translation from 
Kutscher, 2010, p. 96). These signs are also differentiated according to the type of 
indirect similarity: 1) Signs with a “metonymic relationship” imitate something that 
stands for the referred: this is often a relationship from the part to the whole or vice 
versa. An example is the sign MATHEMATICS (Fig. 1d), which – with the exception of 
regional variants – differs from the sign NUMBER only in the mouth image. The 
metonymic relationship exists to the extent that “in mathematics (among other 
things) one deals with numbers” (Wille, 2020, p. 202). 2) Signs that imitate an action, 
typically manipulating what is being referred (Kutscher, 2010): The sign CALCULATOR 
in Figure 1e (drawn from Wille, 2020, p. 203) is an example for that. Here, the action 
of typing is imitated. This means that both the calculator and the typing itself can be 
expressed. 3) Signs that imitate an action from which the referred results: The sign 
NUMBER (Fig. 1d) again is an example of that: if a number can be seen as the result of 
counting, so the movement of the sign NUMBER imitates “counting in sign language” 
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(Wille, 2020, p. 202). Iconicity can also be intra-linguistic: signs exhibit similarities to 
other signs. In the context of calculating interest, an example in DGS (German sign 
language) is the sign for “credit”, which is like the sign for “to lend” (Krause, 2016). 
This example can also be found in some regional variants of ÖGS.  

Teaching in a Sign Language 

For the bilingual mathematics class with a sign language, “various modality-related 
structural differences between spoken and signed languages should be taken into 
account” (translation from Grote et al., 2018, p. 435). This includes a higher degree of 
iconicity in sign languages than in spoken languages, due to which there is a stronger 
coherence between the signs and the properties of the referred, which “can be 
experienced directly in a sensory – embodied – way” (translation from ibid., p. 428). 
In mathematics classes, therefore, “the type of explanations should correspond with 
the iconic aspects [...]” (translation from ibid., p. 433). Another characteristic is 
centering: “A [...] topic is [...] placed at the center and [...] a syntagmatic context is 
established” (translation from ibid., p. 429). This means that different concepts that 
are used together are placed in relation to each other around a central concept. 
According to Krause (2016, p. 578), “car”, “road”, “drive” and “fast” are examples of 
concepts that can stand in a syntagmatic relationship. A syntagmatic context can be 
created by changing the perspective, i.e. switching from one specific concept to 
another in order to describe it “in more detail” (Grote et al., 2018). This would mean 
in the mathematics class, for example, that a specific central topic should be placed at 
the center around which further “knowledge units that can be experienced with the 
senses are placed” (ibid., p. 430). This raises the question of how coherence would 
manifest itself in signing about variables and what should be placed at the center. 

The Design of the Study  

In a 60-minute session, the participants, adults with ÖGS as their basic language, work 
in groups of three to four on a learning environment with various tasks according to 
the “think-pair-share” principle (cf. Ruf & Gallin, 1999). The study comprises several 
learning environments, each focusing on one aspect of variables, and each session 
comprises only one learning environment. The tasks are designed in ÖGS and videos 
are used instead of a task sheet. The sessions are also accompanied in ÖGS and 
recorded on video. The video material is evaluated in two phases: In the first phase, 
relevant passages are documented with glosses, images, possible translations (to 
German) and video excerpts. Interviews are conducted with the participants based on 
this documentation. The whole process from developing the learning environment to 
the evaluation of the video material takes place in ÖGS.   

 



 

 

82 

The Learning Environments 

 

   

    Fig. 2a      Fig. 2b 

   

     Fig. 2c      Fig. 2d 

Figure 2: Excerpts from the videos that are used as tasks  

The tasks are based on the „Knack-die-Box“ (en. crack the box) learning environment 
(Affolter et al., 2011): Blue and red boxes contain an unknown number of matches, 
but two boxes of the same color always contain the same number of matches. 
Equations as in Figure 2b are formed from such boxes and single matches. The 
following applies: The total number of matches in the left-hand arrangement should 
be the same as in the right-hand arrangement. 

Two learning environments focus on the object aspect (Angeloni, 2023): One learning 
environment comprises three matches that are placed one after the other in a c-shape 
(Fig. 2d). After three matches are placed, the video asks about the total number of 
matches. After the fifth time, only the fact that some matches (in the c-shape) have 
been placed again is signed, but not how many. The question about the total number 
is asked again. In the second learning environment, an arrangement of boxes and 
matches is signed in each of the tasks (Fig. 2a) and the participants are asked how 
many matches are in a red box and how many in a blue box. 

In the learning environment focusing on the substitution aspect, each time an 
arrangement of boxes and matches is shown in the video together with the 
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corresponding equation and a table with values (Fig. 2b) (Angeloni, submitted). The 
video shows that one value for 𝑥 and one for 𝑦 from the table are substituted into the 
equation and the resulting expression is simplified as far as possible. The tasks in the 
learning environment about the calculus aspect are similarly designed: an 
arrangement of red boxes and matches was shown in the video together with the 
corresponding equation (Fig. 2c). Then an equivalence transformation was always 
carried out first on the equation and then on the arrangements of boxes and matches. 
Once the solution has been obtained, the students are asked about the relationship 
between the equation and the arrangements of boxes and the transformations. 

A possible Relationship between Variable Aspects 

Although the learning environment on the calculus aspect was implemented, the 
evaluation of the data collected has not yet been completed. A selection of results 
from the other learning environments is therefore presented below. The signs are ÖGS 
signs that the deaf participants signed in the respective surveys, as well as findings on 
the use of these signs from the interviews with the participants. The signs are labeled 
with glosses. Figures 3a to 3d, 3f and 3g from Angeloni (2023, p. 531) and Figures 4a 
to 4e from Angeloni (submitted) are also taken up and explained further. 

The Object Aspect 

                   

           Fig. 3a             Fig. 3b                  Fig. 3c                   Fig. 3d                  Fig. 3e                Fig. 3f         Fig. 3g 

Figure 3. Signs in relation to the object aspect of variables 

 

The signs in Figure 3 express different facets of the object aspect of variables: The sign 
EMPTY (Fig. 3a) was used to express that the variable does “content” any number. The 
number is therefore not present. The sign in Fig. 3b conveys the information that the 
number has not yet been assigned to the variable or has not yet been communicated. 
The sign OPEN in Figure 3c expresses that it is unknown whether and which number a 
variable will assume. 

The signs in Figures 3d to 3g are directly similar to the sequence of c-shaped matches, 
so that these signs are pictorially iconic: The c-shape of the sign in Figure 3d resembles 
the shape in which three matches are placed each time. On the one hand, the 
movement of the sign resembles  the shape of the sequence in which the c-shapes of 
matches are placed (cf. Fig. 2d) and, on the other hand, the action of placing twice 
three c-shaped matches. The sign in Figure 3e can be similar explained, but the hand 
shape only emphasizes a certain characteristic of the c-shape, namely that the c-



 

 

84 

shapes can be understood as two-dimensional figures. The sign in Figure 3f describes 
the number of matches that make up a c-shape in the sequence, and its movement 
also resembles the shape of the sequence in which the c-shapes lie. Therefore, a 
pictorial iconicity can be observed here. The signs can also convey further information: 
The sign in Figure 3d also expresses the exact number (two) of c-shapes and in Figure 
3f it is signed that four c-shapes are lying or being laid. The fact that there are exactly 
four can be deduced from the context in which it was previously signed that three c-
shapes are already in the sequence and another one is being added. Without this 
context, the exact number would not be apparent, as a triple or more frequent 
repetition of a sign generally only expresses a plural. The exact number would usually 
be signed beforehand. The signs in Figure 3e and 3g express that the sequence 
continues indefinitely. In the sign THREE (Fig. 3g), the movement also stretches the 
range  for the number of c-shapes in the sequence and the hand shape conveys that 
the total number is a multiple of three. 

The Substitution and the Shell Aspect of Variables  

 

               
     Fig. 4a              Fig. 4b                  Fig. 4c             Fig. 4d                 Fig. 4e              Fig. 4f                     Fig.. 4g 

Figure 4: Signs in relation to the substitution aspect of variables  

The signs in Figures 4a to 4d are pictorially iconic because they are directly similar to 
the written image with the table of values above the equation (Fig. 2b). In addition, 
the first two signs (Fig. 4a and 4b) imitate an action in which something is taken from 
the table and is placed where the equation is. This means that a number from the 
table is substituted into the equation. This action can also be imitated with the 
corresponding number sign, as in Figure 4c, in which it is signed that 2 is substituted 
into the monomial 4𝑥. A similar action can be seen in the sign in Figure 4d, but the 
hand shape is that of the “x” from the finger alphabet. This creates a metonymic 
relationship between 𝑥 and the value from the table that is to be substituted into the 
equation. These signs can therefore be classified as schematic icons. 

The sign construct in Figure 4e consists of the number sign THREE behind the sign X. 
This expresses the shell aspect of variables: The sign X acts as a placeholder into which 
the number THREE is inserted and remains. The shell aspect is also “visible” in the sign 
CONTENT (Fig. 4g), which metaphorically expresses that a variable is like a container 
that can contain a number and can be counted to the schematic icons. This can also 
be seen in the sign EMPTY (Fig. 3a), which expresses that a variable “does not contain 
a number”. The sign in Figure 4f is a pointing sign and is used in different ways: 
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Sometimes it was used to point to the location of the term in the sign language space 
where three is going to be substituted for 𝑥, and sometimes to point to the individual 
locations in the sign language space where 𝑥 was previously placed. Neither a direct 
similarity to the picture with the equation nor a schematic iconicity could be 
determined here. 

Discussion about the Centrality of the Shell Aspect of Variables 

The results presented here show that there are different signs that can be used to sign 
about variables and actions with them. For a variable under the object aspect, i.e. 
when a variable stands for an unknown or unspecified number, three signs (Fig. 3a to 
3c) were observed that express different facets of this aspect. As already explained in 
Angeloni et al. (2023, p. 4223), the NOT-YET sign conveys that the number for which 
the variable stands is unknown. Angeloni (2023, p. 530) adds that the number will 
“become known” and that the sign EMPTY (Fig. 3a) expresses that the number remains 
unknown. However, there is another difference between the two signs NOT-YET (Fig. 
3b) and EMPTY (Fig. 3a), which can be derived from the use of these signs outside the 
mathematical context. The sign EMPTY indicates that something is empty. If the sign 
CONTENT (Fig. 4g) – according to that a variable would be regarded as a container – is 
considered in relation to the sign EMPTY, then the unknown nature of the number 
would be expressed in the form of an empty container (an empty variable), which 
places the shell aspect in the foreground. This aspect can also be observed in the case 
of the substitution aspect, for example by the sign construct in Figure 4e. The extent 
to which the shell aspect will remain in the foreground can be further investigated in 
the learning environment about the calculus aspect. The possible influence of the 
learning environment “Knack-die-Box” should be considered here, because the 
consideration of a variable as a box or as a shell is already suggested there and sign 
languages have a wide range of possibilities to refer to something, not least because 
of iconic properties.  

        

Figure 5: Network of the aspects of variables  

Assuming that the shell aspect plays a key role, this could mean for the practice of 
mathematics teaching that the shell aspect could be seen as a “central” variable aspect 
around which “further variable aspects” can be located and thus all aspects can be 
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placed in a syntagmatic relationship to each other. From this perspective, for example, 
the object aspect, the substitution aspect and the calculus aspect would be regarded 
as the “further variable aspects”. Furthermore, there would be different facets for the 
individual aspects, which can be expressed with signs of different iconic types (e.g. Fig. 
4b and 4e as well as 3e and 3g) and have a certain direct sensory (embodied) 
experienceability. This can be observed in the fact that some of the signs from the 
learning environment about the substitution aspect have a (schematic) similarity to 
the action of substituting in the foreground. A resulting network could look like Figure 
5. In this network, it would be possible to switch the perspective from the central shell 
aspect to another aspect or a specific facet and take a “closer” look at it. 

 

Figure 6: a possible sign (of ÖGS) for “substitution”  

In mathematical sign language discourse, the shell aspect can also serve as a buoy that 
can be repeatedly referred in order to express further properties of the variable. In 
addition, the centrality of the shell aspect suggests that the signs INCLUSION (Fig. 6), 
which has a high iconic coherence with the sign CONTENT, could also be used as a 
“general” technical sign for the notion “substitution”. The iconicity, the possibility of 
centering an aspect as well as the possibility of changing the perspective and the 
consideration of further characteristics of sign languages could also suggest that such 
an organization of the variable aspects as presented here in other sign languages is 
possible. On the lexical level, where there are differences in the various sign 
languages, at least the signs CONTENT and INCLUSION can be found in a similar form 
in some other sign languages (cf. Sign Language Dictionary, 2018). 
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5. An Example of a Task from Ttochastics with German Sign 
Language (DGS) 

Warmuth, E., Nordheimer, S. & Sell, T.  

Introduction 

This article presents a task for primary school Math’s lessons that lies at the interface 

between geometry and stochastics and is primarily intended to contribute to 

stochastic thinking. Geometric knowledge and skills are a prerequisite. The first author 

of this article is familiar with the didactics of stochastics and was unable to find any 

articles on the problems experienced by deaf learners in connection with stochastics 

during a (brief) search on the Internet. This article should therefore be seen as a 

suggestion from a layperson and feedback is welcome. 

The Importance of Stochastic Thinking 

Random phenomena are an integral part of our world. Tomorrow's weather cannot 

be predicted with certainty, the lottery numbers defy prediction, agricultural yields 

fluctuate, whether we catch the flu or not depends on many coincidences. Opinion 

research institutes do make predictions about the outcome of the next election, but 

they are by no means certain and have often been very wrong. We are confronted 

with statements about random phenomena almost every day and very often we have 

to make decisions under uncertainty. As responsible citizens, we need stochastic 

thinking to be able to interpret such statements sensibly and make well-founded 

decisions. The term ‘Stochastics’ comes from Latin and means the art of skillful 

conjecture. The mathematical discipline that deals with this is Stochastics. Due to the 

importance of basic stochastic education, elements of stochastics are firmly anchored 

in the educational standards from the beginning to high school graduation. However, 

this continuous line from first grade was only completed with the conference of 

ministers of education of the German stats or Kultusministerkonferenz (KMK, 2004) 

resolution on educational standards at primary level.  

Jäger and Schupp (1983, p. 15) justify the inclusion of elements of stochastics in 

primary school lessons as follows: "Similar to the development of the concept of 

numbers, the understanding of stochastic phenomena, combined with a concept of 

probability, is formed in a long-term, phased process. The development of stochastic 

thinking largely takes place during the period in which pupils attend primary and lower 

secondary school." The upgrading of stochastics in education policy means that it is 

now anchored in curricula and textbooks nationwide, from primary school through to 
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A-levels. In our opinion, the 2012/2014 edition of the Zahlenbuch which can be 

translated as number book is an outstanding example of the implementation of 

educational standards at primary school level. We therefore refer you to 

comprehensive information on the basic concept and materials (including a free 

download of Zahlenbuch 1 to 4) at www.mathe2000.de.  

Experience with Combinatorics Tasks in Sign Language 

In December 2022, a collection of tasks in German Sign Language was created in 

cooperation with the "Kangaroo of Maths" competition team and a group of deaf 

teachers, students and STEM researchers. They are published at https://www.mathe-

kaenguru.de/advent/gebaerden/index.html. The deaf teachers and students were 

able to independently select sub-areas of Maths for the tasks. It is interesting to note 

that combinatorics was one of the most popular subject areas. The deaf students and 

teachers enjoyed formulating combinatorial tasks in German sign language. After the 

teachers had tried out all the tasks in class, one teacher told us: "The Advent calendar 

made me realize that I haven't addressed combinatorics enough in my lessons." 

We would like to build on this observation and present a context that not only contains 

interesting combinatorial questions, but also offers opportunities to introduce basic 

ideas of probability theory.  By choosing a geometric context, we want to address the 

(supposed) strengths of deaf learners known from specialized literature and to 

facilitate their access. Hänel-Faulhaber et al. (2023) state: "Relative strengths can be 

observed in hearing-impaired children and adolescents in the area of geometry 

(Pagliaro & Kritzer, 2013; Edwards et al., 2013), which is often associated with the 

children's strengths in visual perception (Marschark & Knoors, 2012)." However, it 

should be critically noted that the first two studies have a very small sample size, and 

the third study was conducted in a university setting. Caution is therefore required 

when drawing conclusions. In addition, the current collection 

https://stemsil.eu/mathe-adventskalender/?lang=de also contains many tasks 

relating to the geometric topic of "cubes".   

The Potential of the Beetle Task 

The task presented in this article is a modification of the 4th task of the 5th example 

in the educational standards at primary level (KMK 2004, p. 20). There, the task 

consists of finding all the shortest routes from A to Z. It is mainly assigned to the key 

idea of space and form and is located in requirement area III. The reference to the 

standards is established as follows: 
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● apply mathematical knowledge, skills and abilities when working on problem-

based tasks 

● recognize, use and transfer relationships to similar situations, recognize, 

describe and use spatial relationships (arrangements, paths, plans, views) 

We see the additional potential of this task firstly in a combination of geometric and 

stochastic ways of thinking. We thus provide an example of meaningful networking. 

This is now a recognized principle in mathematics lessons. Roth (2013, p. 1) writes: 

"For mathematics as the science of patterns (cf. Devlin, 1998, pp. 3-4) and structures, 

it is characteristic that it searches for relationships between phenomena or 

consciously establishes them. [...] In addition, it is essential for learning success to 

recognize or establish relationships between the various content areas and to apply 

acquired knowledge and skills. In addition, it is advantageous in building 

understanding if relationships between phenomena, representations, terms, 

concepts, contexts, etc. are established or at least specifically sought." In addition to 

networking, the task offers an excellent opportunity for natural differentiation 

(Wittmann, 2001). 

First Modification Beetle Task 

A beetle crawls along the edges of a cube. It starts at corner A and wants to reach the 

opposite corner Z. Because it is so small, it cannot see its destination and at each corner 

- including A - it crawls in one of the three directions along the entire edge to the end. 

But he never goes back. After three edges, he is tired and stops. 

What do you think, is it more likely that he arrived in Z after three edges or that he 

didn't arrive in Z? Or are the chances the same? 

 

 

Figure 1: KMK sample task 
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This is how the problem was presented (slightly modified) by primary school teacher 

B. Winkenbach (2011) in her field reports on a teaching experiment in her 4th grade 

class. The terms "Kante" (edge), "Ecke" (vertex), "auf gut Glück" (on the off chance), 

"wahrscheinlich" (probably) are essential for understanding the task and must be 

familiar to the children from previous lessons and, if necessary, repeated using 

suitable tasks.  

Further Modification of the Beetle Task 

In cooperation with Tino Sell, we have didactically and linguistically revised the task 

text. The revised task is offered bi-modally in German Sign Language (DGS) and in 

German. The illustration shows an excerpt from the German Sign Language version of 

the task, in which the edge model is linked to the directional signs. 

 

Figure 2: The position of the beetle and the description of the possible paths in DGS 

 

We also present two possible approaches to the task. This corresponds to the idea of 

the inductive approach proposed by Grote et al. (2018). In Figures 3 and 4, the 

excerpts from the sign language representations of an example of a favorable and an 

unfavorable path are linked to the edge model and the corresponding position of the 

beetle in the model space or in the corners of the cube. 
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Figure 3: Favorable path "The beetle has reached its destination"  Figure 4: Unfavorable path "Target missed" 

With deaf learners in mind, we think it makes sense to provide colored edges in the 

drawing. In variant A for children who are beginning to learn DGS, a physical edge 

model is shown, and all sentences are demonstrated on the edge model. In variant B 

for children who have a good command of DGS, the physical model is not shown but 

only signed. The picture may be superimposed.  

Beetle Task 

 

Figure 5: Beetle Task 

This is an edge model of a cube. A beetle is sitting in corner A. It wants to crawl to 

corner Z. The beetle's eyes are blindfolded. The beetle feels its way along the edges of 

a cube. The beetle stops at each corner and makes a lucky turn. But it never goes back. 

After three edges, the beetle is tired and stops. In the picture, the beetle first goes along 

the red edge. If it turns onto the light blue edge at the end of the red edge and onto 

the pink edge at the end of the light blue edge, it will arrive at Z. However, if it crawls 

in the order red-black-orange, it will not arrive at Z after three edges. 
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How many paths are possible? What is the probability that the beetle will reach its 

destination? 

Solution to the Beetle Problem 

Task 1: Which paths are actually possible? 

The learners should not be given any instructions on how to solve this task. In any 

case, they should be provided with cube models, paper and colored pencils. The 

colored edges in the template can provide support. Some children will only find some 

of the paths, others will find all of them. 

Solution to task 1: 

We draw a tree diagram (Fig. 6, p. 7) that visualizes the beetle's decisions at each 

corner. At starting point A, it can choose green, blue-dashed or red. If it has chosen 

green and crawled along this green edge, it is faced with the choice of blue or orange, 

as it will not crawl back. If it has now crawled along the orange edge, the last choice is 

purple or black. If it chooses purple, it arrives in Z. Its path can be seen on the third 

cube from the top. If it chooses black, it misses its destination, as the fourth cube 

shows. 

  

 

 

 

 

 

 

 

 

 

 
Figure 6: Tree diagram for the Beetle Task 
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The tree diagram is an important tool in combinatorics and probability theory. It 

structures/models the real situation and systematically records all cases. Like any 

visualization tool, a tree diagram must be acquired by learners. Sill & Kurtzmann 

(2019) write: "To set up a tree diagram, students have to break down the complex 

process in the task into a sequence of actions or decisions. To do this, it is useful to 

imagine the realization of a concrete example and ask which actions are to be carried 

out one after the other [...]. You can orient yourself on the verb used in the task." In 

our case, it is the sign or the verb for "crawl". At the end of each edge, the beetle 

decides where to continue crawling. 

The colors in the tree diagram correspond to the colors of the edges of the cube. To 

familiarize yourself with this correspondence, you should trace a path in the tree 

diagram and at the same time let a (virtual) beetle crawl along the edge model. 

Conversely, a path should be shown on the edge model in the tree diagram.  

The tree diagram as a modeling tool reaches its full potential in secondary school 

stochastics lessons. It makes sense to introduce learners to tree diagrams as early as 

primary school when solving combinatorial problems, because: "There are many 

similarities between the mental actions involved in drawing up tree diagrams in 

combinatorics and probability theory. This is why working with tree diagrams when 

solving combinatorial problems is important for further teaching beyond the actual 

purpose and can be a good basis for working with tree diagrams in probability theory. 

We therefore recommend encouraging children to set up tree diagrams for all suitable 

tasks." Sill & Kurtzmann (2019, p. 199) 

Some learners may have used a tree diagram to solve task 1, others may have only 

found individual paths in their own notation. The complete tree diagram should 

emerge from the individual contributions of the learners in the concluding class 

discussion. The learners use the finished tree diagram to show "their" paths and, in 

doing so, demonstrate the unambiguous correspondence between the paths in the 

tree diagram and the crawling paths of the beetle. You could even draw a large tree 

diagram with chalk on the tarmac and let the children walk or "crawl" their paths like 

beetles. The next task can be solved with the help of the tree diagram. 

Task 2: Sort all paths into those that lead to Z and those that do not.  

Solution to task 2: 

We can simply use the dice images to count that exactly 6 of the 12 possible paths 

lead to the destination. To notate and communicate the paths (for the next task), we 
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can use the abbreviation with the colors. For example, green → blue → yellow for the 

path that leads to the 1st cube from the top.  

Task 3: Why does the path green → blue → yellow have the same chance as the path 

red → black → orange? 

The solution to this task requires a correct understanding of the content of the way of 

speaking "auf gut Glück". In this context, the way of speaking means that the beetle 

does not favor any of the possible directions. It is not so easy to make a choice at 

random without any aids. Think of the game "rock-paper-scissors". An attentive 

opponent will usually be able to observe patterns in their opponent's behavior and 

adapt to them. In our case, for example, by throwing a dice with two blue, two red 

and two green sides – an understanding of the content can be developed or even 

initiated. If the beetle is in A, then we can "take away" its decision by throwing this 

dice. The children could carry out and analyze this dice throwing experiment. We 

rolled the dice 100 times and got the following results: 

 

Color blue red green 

Frequency 30 35 35 

 

Table 1: Frequency of the colors, results 

 

These results presented above are completely consistent with the idea of "at random". 

With only 100 trials, the observed values may deviate considerably from the expected 

value 100 ∙
1

3
which cannot be realized anyway. This is another realization that is part 

of a substantive understanding of probability statements: we have to allow chance 

some leeway. In primary school, we can only achieve a first approximation to this idea. 

That is why it is important to start with such explorations at an early age and to pick 

them up again and again. 

However, if all edges have the same chance at the beginning in A, then this naturally 

applies to all subsequent edges for the same reason. No path is favored in terms of 

chances. Consequently, all paths have the same chance. The sign for chance can be 

seen in Fig. 7.  



 

 

101 

  

Figure 7: The gesture for "probability" or "chance" 

Task 4: What is the probability that the beetle will reach its destination? 

Solution to task 4: 

There are 6 favorable paths to the goal and a total of 12 possible paths of length 3. All 

paths are equally probable. A Laplace model is available. The probability that the 

beetle reaches its destination is 
6

12
=

1

2
 . Of course, in primary school we will not talk 

about Laplace's model, but about the ratio of the favorable paths to all possible paths. 

Laplace’s model is a random experiment with the additional condition that all results 

have the same probability. To back this up, you can use a good coin, which is often 

used to make a fair decision. There are two possible outcomes: "arms" and "tails". 

Only one side is favorable for "tails", the coin is likely to fall 
1

2
 falls on "tails".  

In Winkenbach's lesson experiment (2011), one pupil commented on this result with 

the words "It's a fifty-fifty, so to speak, a draw!" And another immediately put it into 

perspective: "But he also got to be lucky!". The last sentence points out that a 

probability statement does not allow a prediction for the individual experiment. This 

is also a realization that is part of stochastic thinking and should be introduced early 

in the learning process.  
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6. Sign Geometry 

Nordheimer, S. & Sell, T. 

Introduction 

Considering Polya’s (1969) theory of mathematical problem-solving, which did not 

lose its relevance for didactics of geometry and is still foundational today (Weigand et 

al., 2018), stereometry plays a decisive role throughout one’s entire academic career. 

According to Frick (2019): “The present findings point to a tight connection between 

early mental transformation skills, particularly the ones requiring a high level of spatial 

flexibility and a strong sense for spatial magnitudes, and children’s mathematics 

performance at the beginning of their school career.”  Although Signed Geometry 

seems to have positive effects on visual-spatial abilities of all learners (Groninger & 

Sieprath, 2019) this paper focuses on deaf and hard-of-hearing learners whose talents 

can be overlooked by educational researchers and teachers (Weber et. al., 2023). 

When discussing teaching Signed Geometry to deaf and hard-of-hearing learners, we 

will first consider the theoretical framework of the mathematical abilities of deaf 

learners established and used for empirical studies by Rosanova (1991).  

After that, we will refer to empirical findings which deal with geometrical learning and 

teaching of deaf learners on one side and visualization of mathematical content on 

the other. We will then use these contributions as building blocks for the theoretical 

framework (Niss, 2019) of Signed Geometry and derive ideas for further theoretical 

and empirical studies, as well as didactical consequences for teaching Signed 

Geometry at school. We then introduce concrete teaching examples as parts of the 

empirical data we gathered through cooperation with deaf teachers and the creation 

of teaching materials for deaf learners in Bonn Math Club to illustrate the theoretical 

aspects. The presented example was introduced to the deaf learners and their 

teachers as a part of the project Signed Mathematical Challenges in the beginning of 

2023. The aim of the given problem is to provide concrete ideas for teaching, to 

illustrate theoretical considerations synthesized from different researchers, to apply 

them into school praxis and to reflect theoretical and empirical suggestions in 

cooperation with school teachers. 

Theoretical Background  

To describe mathematical abilities and potentials of typically hearing school children, 

Krutetskii (1976) combined cross-sectional and longitudinal examinations and used a 

precisely designed series of mathematical problems. Due to the size of the research 

populations examined in the studies, Krutetskii’s work remains unique in the field of 
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mathematical education and research focused on mathematical creativity and 

giftedness in general (Leikin, 2021).  

Krutetskii (1976) differentiated among three distinct types of mathematical abilities 

on different levels:  

● Analytic – very strong verbal–logical component predominating over 

a weak visual–pictorial component; spatial concepts weak; cannot use 

visual supports in problem solving and feels no need to use the visual 

support.  

● Geometric – very strong visual–imaginative component, 

predominating over an above average verbal–logical component; 

spatial concepts very good; can use visual support in problem solving 

and feels a need.  

● Harmonic – strong verbal–logical and strong visual–imaginative 

components in equilibrium; spatial concepts good. Subtype (a) 

(abstract harmonic) – can use visual support in problem solving but 

prefers not to. Subtype (b) (pictorial harmonic) – can use visual 

supports in problem solving and prefers to do so. 

However, Krutetskii was criticized by Kolmogorov (2001) for not taking into account 

the possibility of the special needs of learners who showed outstanding mathematical 

talents and performance. Deaf learners, with a linguistic repertoire which includes 

signed languages, were not considered either in Krutetskii’s, nor in Kolmogorov’s 

works. Following Krutetskii’s understanding of mathematical abilities in general, 

Rosanova (1991) studied the development of mathematical abilities of deaf learners 

in school environments. She would show that Krutetskii’s typology is applicable not 

only for typically hearing students but to deaf learners as well. According to Rosanova 

(1991), deaf learners who belonged to the group with strong verbal-logical and visual-

imaginative reasoning showed the best performance in school mathematics.  

Presmeg (1986) followed Krutetskii’s research and focused on the connection 

between mathematical giftedness and visualization. She asked for reasons why the so-

called non-visualizers - who belonged to the first group according to Krutetskii's 

approach - were often more successful in school mathematics than visualizers. Besides 

external factors rooted in the teaching methods and learning environments - which 

gave more room and appreciation to non-visual and analytical ways to solve problems 

in classical mathematical classroom settings - she was searching for internal factors 

for the success of non-visualizers. In her interviews with hearing high school students, 

she would see that non-visualizers often used general non-visualized formulae to solve 

mathematical problems more rapidly. A secondary reason which could prevent 

visualizers from successful problem solving when compared to non-visualizers could 
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be the challenge to overcome one-case concreteness of the visual image to find 

general solutions to mathematical problems. According to Krutetskii, to be helpful in 

mathematical thinking and problem solving, the visual imaginary has to be 

controllable and generalizable by the problem solver:  

The fact is that the graphic schemes used by these pupils [i.e., visualizers of high ability] 

are a unique synthesis of concrete and abstract. The 'geometer' pupils feel the need to 

interpret a problem on a general plane, but for them this general plane is still 

supported by such images. In this they differ from pupils of little ability - for whom 

visual images really bind thinking, push it onto a concrete plane, and hinder the 

interpretation of a problem in general form (Krutetskii 1976, pp. 325-326). 

In line with Krutetskii’s and Presmeg’s ideas for hearing students, Rosanova (1991) 

suggests that to develop mathematical potentials and abilities of deaf learners, it may 

be necessary to pay more attention to the generalization processes. We suggest giving 

deaf students not only opportunities to create visual images but also to find ways for 

the controlled use of geometrical visualizations. In geometry classes, this can be 

achieved in two ways. Firstly, it may be helpful to make explicit to the learners when 

the image or visualization represents one concrete example or when its aim is to 

visualize general propositions.  

To communicate about the scope of the geometrical visualization, conventionalized 

and productive signs and gestures could be used as instruments for the controlled use 

of geometrical images to solve mathematical problems (Nordheimer et. al., 2024). 

Secondly, variations of geometrical visualizations and the building of geometrical 

patterns from many different cases can be helpful to teach deaf learners how to 

generalize geometrical visualizations and to derive general propositions by studying 

many cases and comparing them with each other (see also Presmeg ,1986). Later in 

this paper, an example will be given showing how this could be achieved in geometry 

lessons when referring to the volume of a cube. Rosanova (1991) suggests when 

teaching deaf learners to pay more attention to the development of verbal-logical and 

so-called visual-imaginative thinking as an interplay of components. We aim to go 

further and to find ways to foster verbal-logical and visual-imaginative thinking by 

careful and conscious targeted implementation of Signed Geometry and signed 

languages into mathematical learning and teaching processes by giving concrete 

geometrical examples. To do so, we will first look at some empirical findings 

concerning the geometrical thinking of deaf children.  
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Empricial Findings 

Empirical studies focused on the teaching of geometry to deaf learners stress the 

connection between learners' abilities to solve geometrical (and especially spatial) 

problems and their general mathematical abilities. Not all studies actively contribute 

to the value of signed languages in the development of geometrical skills, but there 

are empirical results which support the relevance of teaching geometry in signed 

languages. We will present some relevant empirical findings here.  

Geometry and spatial thinking of deaf learners 

Zarfaty et al. (2004) studied 3- and 4-year-old deaf children’s ability to remember and 

to reproduce the number of colored bricks in a set of objects and suggests that deaf 

children benefit from mathematical teaching methods that emphasize the spatial 

representation of numbers. On the other hand, Chen (2022) found a strong correlation 

between spatial ability and the mathematical performance of deaf learners by asking 

256 deaf schoolchildren in Grades 3 to 9 in two special education schools in China to 

perform cognitive and mathematical tests. Based on another empirical study with 198 

deaf and hard of hearing students, Chen and Wang (2020) even suggest that 

mathematical achievement of deaf learners depends more strongly on spatial ability 

than on specific numerical abilities. However, these findings may depend on the 

cultural and educational context of the teaching of mathematics and on specific 

educational traditions and systems in China which differ from those employed in 

European contexts.  

The results of the research of Marschark et al. (2015) also suggest that there is more 

empirical evidence proving an advantage for deaf students in the spatial domain than 

in the visual domain. This fact leads us to the assumption that it may be important to 

expand the framework of the mathematical curriculum regarding stereometry and not 

to place such a heavy emphasis on plane geometry as is the current state of affairs 

expressed in the traditional curriculum. Marschark et al. (2015) also found that the 

“performance of deaf and hearing individuals on the same visual-spatial tasks was 

associated with differing cognitive abilities, suggesting that different cognitive 

processes may be involved in visual-spatial processing in these groups” (Marschark et 

al., 2015).  

Relative strength of deaf learners in geometry 

Pagliaro and Kritzer (2013) examined the performance of deaf and hard-of-hearing 

children, 3–6 years of age, against a developmental trajectory of early mathematics 

concepts and skills. The results of these studies show “shape“ and “geometry“ as areas 

of strength relative to other areas. These results are in line with later research 

conducted by Wauters et al. (2023) that also found strengths in the geometry domain 
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and challenges in the area of measurement in deaf and hard-of-hearing children. The 

role of sign languages in the mathematical development of DHH children was not 

considered in these studies. 

Using sign language is critical for deaf children to develop spatial and geometrical 

thinking 

To describe the role of signs and gestures in the process of geometrical problem-

solving, we would like to refer to the work of Johnson (1987 cited in Campbell et al., 

1995), who differentiates between abstract propositional structures, image schemata 

and particular concrete “rich images.” As an illustration, we will provide an example 

given by Campbell et al., (1995). The concept of the triangle and its properties is a part 

of an abstract propositional structure. In contrast, a “rich image” is a particular picture 

of one specific triangle in the mind of a problem solver. Image schemata build the 

bridge between abstract ideas and concrete images. This kind of image use can be 

considered as an important step of schematization and generalization of geometrical 

visualizations. Productive and conventionalized signs support the generation of image 

schemata and have an impact on the perception of geometrical shapes.  

The views described above could be supported by older studies conducted by 

Dyachkov (1961), who worked with deaf children and young people without the 

experience of being educated in orally-oriented schools. Dyachkov’s study 

demonstrates the great role of signed languages in the development of the perception 

of geometrical figures and, especially, solids. As evidenced by the study, 7 and 8-year-

old children who did not know signs for the shapes had difficulties with visually 

distinguishing geometrical figures and solids. Children who possessed signed 

designations picked up objects 2 - 3 times more accurately. At the same time, the 

degree of shape distinction directly depended on the degree of knowledge of signs. 

Dyachkov worked with children and young people who, for various reasons, were 

unable to attend school and were therefore not specifically supported with spoken 

language. He discovered that children of deaf parents were more successful in 

differentiating geometric figures and solids. 

Leaning on Dyachkov’s findings, Suchova (1966) carried out various long-term studies 

of geometry teaching in several schools for deaf children. Based on this, Suchova 

suggested connecting geometry with real-life instructional scenarios (for example 

working with wood and producing objects of everyday life). She also recommended 

using geometry as a teaching and demonstration tool to instruct students in other 

areas of mathematics like arithmetic. In our teaching example below, we show how 

cubes as geometrical objects can help learners visualize cubic numbers like 64. In the 

chapter focused on stochastics (Warmuth et al., 2025), you can find out how geometry 

can be used to teach stochastics.  
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To study the effect of signed languages and specific experiences of perception on the 

spatial abilities of deaf children Parasnis et al. (1996) compared deaf and hearing 

children. She could not find a significant difference in their performance on the visual 

spatial skills tests, suggesting that deafness per se may not be a sufficient factor for 

the enhancement of visual spatial cognition. In agreement with Dyachkov, she found 

that exposure to sign language and fluent sign skills may be the critical factors that 

lead to differential development of visual spatial skills in deaf learners.  

Based on empirical results Emmorey (2023) claims that experiences with sign 

languages can enhance mental rotation ability. That could be explained with the fact 

that comprehending spatial descriptions from the signer’s perspective requires a 

mental transformation of locations in signing space (Secora & Emmorey, 2020). 

Hands-on approaches to solving visual-spatial problems 

Yashkova (1988) aimed to describe deaf children's thinking processes when 

performing practical problems of a visual-spatial character. The operations of analysis 

and synthesis, inseparably connected with each other in the process of any mental 

activity, were of great importance in solving these problems. The peculiarity of the 

tasks consisted in the fact that their performance required the ability to switch from 

object-action forms of analysis and synthesis to mental ones and then to switch back. 

To support the mental analysis of said objects without possibility of action with them, 

some participants used signs or gestures which represented actions and operations 

within an imagined apron.  

Sture (1984) studied how deaf learners solved problems in physics in comparison to 

hearing students using problems with spatial components. The problems needed to 

be understandable to deaf learners and at the same time require from them an active 

analytical approach revealing essential connections. These requirements were met to 

a certain extent by setting a specific practical experimental task before the pupils. In 

accordance with the instruction, the pupils were to make a ball fall from the inclined 

plane into each of the four compartments of the box in turn and explain the results 

obtained. Many deaf learners, even before starting the experiments, gave the general 

correct solution: they offered to raise or lower the chute depending on the tasks set. 

The further content of their actions consisted in "trying on" the height of the launching 

point to the necessary range of flight. This was achieved most often during practical 

trials, but often students mentally traced the path of the ball, accompanying its 

"movement" with imitating signs or gestures, and correlated the predicted range of 

flight of the body with the height of its fall. The use of signs or gestures in problem 

solving was observed more often in the deaf students as opposed to their hearing 

counterparts. As a result of such actions, many deaf students were able to get the balls 

http://../Downloads/R38
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into the desired range interval with sufficiently high accuracy. Their predictions were 

often more accurate than those of the hearing students.  

Rosanova's (1978) study showed that deaf children used words less often than hearing 

children to memorize geometrical figures or solve visually presented problems. They 

used more signs or gestures than hearing pupils to support memorization and 

problem-solving. Based on these studies with deaf children, Rosanova claimed that 

language and thinking form a unit, but they are not identical. It is therefore crucial for 

the development of thinking that children learn to operate with mental images. Their 

images of objects and ideas should become increasingly generalized and detached 

from concrete objects and actions with them. Rosanova assumed that actions, motoric 

body movements, models, pictures, gestures, signed languages or other language 

systems and modalities regulate thinking and help them to operate with mental 

images. According to this view, the best way to develop geometric and spatial thinking 

is to allow operations with mental images by solving problems which could be 

represented in actions, pictures, models, signs or words in the beginning and to move 

toward operating with mental images using signs, gestures or words without using 

tangible or visible objects.  

Hints that deaf children are natural visual learners? 

Presmeg (1986) described visual imagery as a continuum from concrete to abstract 

and suggested placing Johnson’s “rich images” at one end of the continuum and his 

“image schemata” at the other. In an earlier study, Presmeg (1986) proposed that 

there are two types of visual images involved in different situations that have different 

impacts on the mathematical performance of students. For example, Pitta-Pantazi and 

Christou (2010) suggest for elementary students that one type of visual image is more 

figurative, skeletal, symbolic and generic, and the other type is more concrete, 

pictorial and colorful.  While students with high achievement in mathematics operate 

with skeletal, figural or schematic images, students which are not so successful in 

mathematics tend to produce more detailed, colorful and pictorial images. This 

distinction is similar to the categories “schematic” and “pictorial” used by Blatto-

Vallee et al. (2007) to investigate visual-spatial representations in mathematical 

problem solving by deaf students. Comparing the results of deaf students to those of 

their hearing peers, Blatto-Vallee et al. (2007) conclude that deaf students use more 

pictorial than schematic representation to solve mathematical problems. In this study, 

hearing students used more “schematic” representations and outperformed their 

deaf peers. A closer look at the study reveals that the items of the study included 15 

mathematical word problems without mathematical symbols, geometrical drawings 

or sketches. Sign languages or gestures are not considered in the study. For this 

reason, the study doesn’t provide insights into the visual-spatial abilities of deaf 



 

 

115 

learners. But it does provide empirical proof that word problems alone are not 

sufficient to investigate the visual-spatial skills of deaf learners and gives us additional 

arguments for multi-modal teaching methods like those suggested by Skyer (2023). 

 

Deaf students are often considered visual learners who profit from the visualization of 

mathematical teaching materials with “language poor” or even “language free” 

learning environments. However, the results of the investigations by Marschark et al. 

(2015) showed that performance on the Spatial Relations task was related to the deaf 

participants’ language ability in their preferred modality (sign or spoken language).  

Using and fostering the preferred mode of communication and instruction appears, in 

this case, to be more relevant than focusing on the specific visualization of 

mathematical ideas. To strongly emphasize visualization without targeted language 

support and teaching in geometry lessons could presumably lead to children relying 

too heavily on pictorial and concrete images and prevent them from developing 

schematic images of abstract concepts and ideas. We will now summarize the 

didactical consequences of our theoretical contributions supported by empirical 

research.  

Didactical Consequences 

Before we give some practical examples for teaching, we would like to summarize the 

results of the theoretical findings of the studies mentioned which are relevant for 

teaching geometry to children who are deaf and hard of hearing. 

● Geometry seems to be an area of strength for deaf children and can be used 

to teach other mathematical areas like arithmetic. 

● To teach geometry, it is important to connect active operations with models 

and visualizations embedded in the language to help students to produce not 

only concrete pictorial but also schematic images of the abstract geometrical 

concepts. 

● Sign languages are not only the preferred mode of communication for many 

deaf children, but also the tool which helps them to perceive objects, to 

memorize concepts and to solve problems. 

● Spatial geometry seems to play a crucial role for mathematical development in 

children. 

To give some concrete ideas as to how spatial geometry and arithmetic can be 

connected by use of signed languages and 3D models, we will now concentrate on the 

idea of the volume of a cube as follows below. We would like to make some 

suggestions for mathematics lessons starting in 3rd grade. The ideas can be adjusted 

to the lessons with older students by implementing fractions and even talking about 
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the possibility of cubes with irrational volumes. We entrust teachers as pedagogical 

experts with the testing of our suggestions in the school setting and welcome 

feedback.  

Teaching Example 

In our first section, we saw how important it is to teach spatial geometry to deaf 

children. It is of great significance that sign language connects the models and 

visualizations from the very beginning and contributes to the development of 

concrete, but also schematic images. Operating with schematic images can contribute 

to the development of abstract ideas. An example of such an idea is the volume of a 

cube. There are various approaches that may be applied to the subject. For example, 

teachers could cut or saw cubes of plasticine, cheese, soap or even wood into smaller 

cubes together with the learners in craft lessons. It is crucial that the actions are 

introduced by signs and gestures derived from the actions on the one hand and 

documented by videos and pictures on the other.  

As an introduction, for example, the origin of the lexical sign that corresponds to the 

word "cube" can be discussed with the children. The children can be given a ready-

made cube and experiment with it or be given the task of making their own cube, e.g. 

from soap or potato. The aim should be to create a fair die where every number is 

equally likely. By analyzing the gesture and realizing it through their own actions, they 

can discover that a fair cube cannot be a cuboid, for example, but must be a cube in 

the geometric sense. Its edges must be of the same length and its sides must be of the 

same size. 

Once the children experimented with the lexical form and produced their own cube, 

they can be exposed to a productive description of the cube where two flat hands 

substitute parallel surfaces of the cube. The children can look at the teacher’s 

descriptions and repeat them by forming with their hands all six surfaces. Once they 

are familiar with the productive description of the cube, they can try to describe the 

height, length, and width of one particular cube presented by the teacher. They can 

move toward the generalization of the image by varying the side length of the cube 

and by describing the length of the edges of their own cube and then by doing it for 

the cubes of their classmates. 

The exercises can be documented as videos or photos which can be enriched with 

geometrical sketches not only by the teachers but also by the learners themselves. 

These variations and documentations would help the learners to move from concrete 

examples to schematic representations mediated by conventionalized and productive 

signs. As demonstrated by the teacher in the picture, they can first draw the vertices, 

which form three right angles and can be interpreted as a part of the Cartesian system 
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of coordinates. In this concrete example each vertice is 4cm long which is shown by 

the teacher and can be transferred to their own cubes by varying the length. 

 

Results with practical Relevance  

 

 

 

 

 

 

 

 

 

Figure 1: The length of the cube is 4 cm 
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Figure 2: The width of the cube is 4 cm (excerpts) 
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Figure 3: The height of the cube is 4 cm (excerpts) 

 

In the next step, the cube, which is invisible in the video and made visible with help of 

transparent images produced by GeoGebra, will be divided by parallel lines into 64 

pieces. The children can watch the video without sketches or study the series with 

pictures which connect signs and sketches of geometrical solids. The aim is that they 

can recognize the actions they completed with soap or wooden cubes. They can try to 

count smaller invisible cubes or go back to the model cubes to control their counting. 

The actions, the videos and the sketches connected through productive and 

conventionalized signs represent concepts by giving the students the possibilities to 

build concrete pictures of a bigger cube which is divided into smaller cubes which also 

represent cubic number or operation 4x4x4. But it also opens various possibilities to 

move forward schematic images of cubes and to grasp the abstract idea of the cube 

as a solid with edges of the same length and surfaces where two of them are parallel 

to each other. These are properties which can be generalized. 
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Figure 4: The distance between the cutting planes is 1 cm. 
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Figure 5: Cutting of a cube by parallel planes. 
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By cutting different cubes in a similar fashion or the same cube into smaller cubes as 

a next step of exercises, students can investigate the concepts of volume and other 

units of measurement by imagining cubic units whose side length strives to zero, while 

preparing for the complex idea of the volume of geometrical solids by transcending 

visible models from the real world.  

 

  

  

  

 

Figure 6: Transformation of cube in German Sign Language and its wooden model. 
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As the cube and its division through parallel planes is precisely described, the main 

question of the problem can be posed in German Sign Language: How many unit cubes 

are there in the bigger cube?  

 

  

  

  

 
Figure 7: How many unit cubes are there in the bigger cube? 
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To conclude our contribution, we will now look back again and make explicit 

connections between our theoretical ideas and the concrete examples provided 

above:  

● Geometry seems to be an area of strength for deaf children and can be used 

to teach other mathematical areas like arithmetic.  

We used the volume of a cube to visualize a concrete cubic number which can 

be interpreted as a result of three times multiplication of the same number. 

The number can be interpreted as the amount of cubes in the height, length 

and width of the cube.  

● To teach geometry, it is important to connect active operations with models 

and visualizations embedded in the language to help students to produce not 

only concrete pictorial but also schematic images of the abstract geometrical 

concepts. 

We operated with an invisible cube by cutting it in smaller cubes and 

connected it with a wooden model of the same shape.  

● Sign languages are not only the preferred mode of communication for many 

deaf children, but also the tool which helps them to perceive objects, to 

memorize concepts and to solve problems. 

We gave a representation of the problem in German Sign Language and gave 

the students the possibility not only to see the cube in the wooden model or 

in the visually perceived signs but also to feel it in their hands by repeating the 

signs themselves.  

● Spatial geometry seems to play a crucial role for the mathematical 

development of children. 

We used a concrete cube with a volume of 64 cm² to introduce the idea of 

volume and gave some ideas as to how the presented problem can be varied 

by the deaf learners to generalize the concrete created spatial image.  

To sum up, we encourage practitioners to present our signed problems to learners, to 

find their own ways to describe different cubes with different volumes, to move 

further to other geometrical solids and phenomena. We look forward to teacher 

feedback and to constructive criticism – a process which is difficult to overemphasize 

when it comes to development of educational science and practice.  
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e if 

it lies en
tirely in

 th
is 

p
lan

e o
r d

o
es n

ot 

in
tersect it. 

 Tw
o p

lanes are 

p
arallel if they 

co
in

cid
e o

r d
o n

o
t 

in
tersect. Th

is is 

referred
 to as 

p
arallel p

lan
es. 

Th
e o

p
p

o
site sides o

f a 

cu
b

o
id are p

arallel to 

each
 o

th
er. 

    Th
e ed

ges o
f a cu

b
oid

 

w
h

ich are n
o

t in
 the 

b
asic sq

u
are are p

arallel 

to
 th

is sq
u

are. 

 Th
e o

p
p

o
site su

rfaces o
f 

a cu
b

oid
 are p

arallel. 
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8 
D

istan
ce 

A
 n

u
m

erical o
r so

m
etim

es 
q

u
alitative m

easu
rem

en
t o

f 
h

o
w

 far ap
art geo

m
etrical 

o
b

jects o
r p

o
in

ts are. 

Fo
r exam

p
le th

e d
istan

ce 
b

etw
e

en
 cu

ttin
g p

lan
es in

 o
u

r 
exam

p
le is 1

 cm
. 

 

9 
Len

gth
 

u
n

it 

A
 u

n
it o

f len
gth

 refers to
 an

y 
arb

itrarily ch
o

sen
 an

d
 accep

ted
 

refere
n

ce stan
d

ard
 fo

r 
m

easu
rem

en
t o

f len
gth

. 

In
 o

u
r exam

p
les w

e
 m

easu
re 

len
gth

 w
ith

 cm
. 

 
So

u
rce: H

eide K
ü

h
n

e 
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10 
V

o
lu

m
e 

u
n

it 

A
 u

n
it o

f vo
lu

m
e is 

eq
u

al to
 th

e 
vo

lu
m

e o
ccu

p
ied

 
b

y a u
n

it cu
b

e
 w

ith
 

a sid
e len

gth
 o

f 
o

n
e. Sin

ce th
e 

vo
lu

m
e o

ccu
p

ies 
th

ree d
im

en
sio

n
s, if 

L is ch
o

sen
 as a u

n
it 

o
f len

gth
, th

e 
co

rresp
o

n
d

in
g u

n
it 

o
f vo

lu
m

e is L3 

Sin
ce w

e
 h

ave 
ch

o
sen

 cm
 to

 
m

easu
re len

gth
, 

w
e

 can
 u

se cm
3

 
to

 m
easu

re 
vo

lu
m

e o
f a cu

b
e 

in
 o

u
r exam

p
le. 

 Th
e vo

lu
m

e o
f a 

cu
b

e is 6
4

 cm
3 

 
So

u
rce: H

eide K
ü

h
n

e 
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Didactical Terms (Geometry) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
T

e
rm

in
o

lo
g

y
 

D
e
fin

itio
n

 
E

x
a
m

p
le

s
 

Illu
s
tra

tio
n

 

1 
Exp

erim
en

tin
g 

w
ith

 
geo

m
etrical 

m
o

d
els 

Stu
d

en
ts can

 p
ro

d
u

ce, an
alyze, d

escrib
e 

o
r id

en
tify m

o
d

els o
f geo

m
etrical so

lid
s 

b
y u

sin
g all o

f th
eir sen

ses. 
 

In
 o

u
r exam

p
le, w

e
 suggest 

givin
g learners th

e 
p

o
ssib

ility to
 b

u
ild

 cu
b

e 
m

o
d

els fro
m

 clay o
r so

ap
 

an
d

 to
 d

ivid
e th

em
 in

to
 

u
n

it cu
b

es to
 estim

ate th
e 

vo
lu

m
e. 

 

2 
Sketch

in
g an

d
 

d
raw

in
g 

Stu
d

en
ts can

 u
se lin

gu
istic strategies o

f 
sign

ed
 langu

ages to
 p

ro
d

u
ce 3

D
-ske

tch
e

s, 
u

se G
eo

G
eb

ra o
r vid

eo
 to

 create d
yn

am
ic 

visu
alizatio

n
 o

f so
lid

s o
r d

raw
 2D

-
ske

tch
es u

sin
g p

ap
er an

d
 p

en
cil. 

 

In
 o

u
r exam

p
le w

e
 sh

o
w

 
co

n
crete G

eo
G

eb
ra-im

ages 
an

d
 an

im
atio

n
s o

f cu
b

e 
d

ivisio
n

s. 

 

3 
M

easu
rin

g 
To

 m
easu

re th
e vo

lu
m

e o
f so

lid
 

tran
sp

aren
t m

o
d

els, stu
d

en
ts can

 first 
m

easu
re th

eir exten
sio

n
s b

y d
eterm

inin
g 

h
eigh

t, len
gth

, an
d

 w
id

th
. Th

e 
tran

sp
aren

t so
lid

s can
 also

 b
e filled

 w
ith

 
w

ater, san
d

 o
r d

ifferen
t u

n
it cu

b
es to

 
estim

ate th
e vo

lu
m

e. 

In
 o

u
r exam

p
le, an

 em
p

ty 
an

d
 tran

sp
aren

t cu
b

e w
ith

 
th

e sam
e m

easu
res as in

 
th

e exam
p

le can
 b

e filled
 

w
ith

 64 u
n

it cu
b

es w
h

ich
 

h
ave a vo

lu
m

e 
m

easu
rem

en
t o

f 1 cm
3

. 
 

0
9
_
K

o
e
rp

e
rg

e
o
m

e
trie

.p
d
f 

(h
u
-b

e
rlin

.d
e
) (F

ille
r) 

 

https://didaktik.mathematik.hu-berlin.de/user/filler/geometriedidaktik/09_Koerpergeometrie.pdf
https://didaktik.mathematik.hu-berlin.de/user/filler/geometriedidaktik/09_Koerpergeometrie.pdf
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4 
C

alcu
latin

g 
To

 calcu
late th

e m
easu

rem
en

ts o
f so

lid
s,  a 

fo
rm

u
la w

h
ich

 w
as d

erived
 fro

m
 geom

etrical 
p

ro
o

fs can
 b

e
 u

sed
. 

In
 o

u
r exam

p
le, 

learn
ers can

 u
se th

e 
ap

p
ro

p
riate fo

rm
u

la 
to

 calcu
late th

e 
vo

lu
m

e o
f a cu

b
e o

r 
cu

b
o

id
. 

 
 S

o
u
rc

e
: H

e
id

e
 K

ü
h

n
e

 
 

 

5 
G

eo
m

etrical 

R
easo

n
in

g 
A

fter th
e stu

d
en

ts are d
o

n
e exp

erim
en

tin
g, 

m
easu

rin
g, calcu

latin
g an

d
 d

o
cu

m
en

tin
g th

eir 

fin
d

in
gs,  th

ey can
 try to

 reflect o
n

 th
e

 

geo
m

etrical argu
m

en
ts th

ey u
sed

 an
d

 try to
 

gen
eralize th

eir fin
d

in
gs. 

To
 p

ro
ve m

ath
em

atical statem
en

ts, it co
u

ld
 b

e 

h
elp

fu
l to

 u
se th

e visu
als su

ggested
 b

y N
elso

n
 

(2005) in
 h

is b
o

o
k “P

ro
o

fs W
ith

o
u

t W
o

rd
s.” 

H
o

w
e

ver w
e

 d
o

 reco
m

m
en

d
 d

iscu
ssing an

d
 

d
o

cu
m

en
tin

g visu
al p

ro
o

fs in
 sign

ed
 lan

gu
ages 

an
d

 n
o

t to
 rely o

n
 th

e visu
als alo

n
e. In

 o
u

r 

p
ap

er w
e give an

 exp
lan

atio
n

 o
n

 h
o

w
 co

n
crete 

an
d

 visu
al im

ages o
r p

ictu
res can

 b
e 

em
b

ed
d

ed
 in

 th
e lan

gu
age an

d
, b

y th
ese

 

m
ean

s, allo
w

 gen
eralizatio

n
s o

f m
ath

em
atical 

p
ro

p
o

sitio
n

s giving n
o

t o
n

ly co
n

cre
te p

icto
rial 

im
ages, b

u
t also

 argu
m

en
ts to

 co
m

m
u

n
icate 

an
d

 to
 th

in
k ab

o
u

t geo
m

etrical p
ro

o
fs. 

In
 o

u
r exam

p
le, 

stu
d

en
ts can

 try to
 

fin
d

 th
e fo

rm
u

la 

w
h

ich
 b

est h
elp

s 

th
em

 to
 estim

ate th
e 

vo
lu

m
e o

f sp
ecific 

p
yram

id
 an

d
 p

rism
 

typ
es b

y d
ivid

ing th
e 

cu
b

es h
eld

 

th
erew

ith
in

. Fro
m

 

th
ese

 sp
ecial cases, 

th
ey can

 m
o

ve o
n

 to
 

gen
eral m

eth
o

d
s fo

r 

th
e estim

atio
n

 o
f th

e 

vo
lu

m
e o

f p
rism

s an
d 

p
yram

id
s. 

 

 
 

S
o
u
rc

e
: N

e
ls

o
n
 (2

0
0
5
) P

ro
o
fs

 W
ith

o
u
t W

o
rd

s
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