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1. From Scientific Concepts to Signs — Leveraging STEM

Glossaries in Deaf Education
Audrey M. Cameron

This chapter explores the innovative use of STEM sign language glossaries in deaf
education, focusing on the Scottish Sensory Centre (SSC) BSL Glossary project. It
examines the critical intersection of deaf education, sign language, and STEM subjects,
highlighting the challenges and opportunities in teaching complex scientific concepts
to deaf students. The chapter traces the evolution of sign language glossaries and
details the meticulous process of developing scientific signs. Through examples from
various scientific disciplines, including geography, biology, astronomy, and chemistry,
it demonstrates how carefully crafted signs can bridge the gap between written
scientific terminology and visual-spatial cognition. The chapter also discusses the
impact of these resources on conceptual understanding, presenting evidence from
classroom observations and research. By exploring the development and application
of sign language in STEM education, this work illuminates the transformative potential
of visual language in conveying complex scientific ideas, enhancing accessibility, and
promoting equal opportunities for deaf learners in STEM fields.

This is a Transcript of the IS videos

The author gratefully acknowledges the contributions of the SSC BSL Glossary team,
including Gary Quinn and Rachel O’Neill, whose collaborative efforts in developing the
signs and concepts discussed in this chapter were invaluable. The IS videos were
translated by David Summersgill (sign language interpreter), and the images were
produced by Abigail Sheridan and Molly Mclnulty.

1.1 Introduction: Bridging STEM and Sign Language
https://edin.ac/4fc2fLI

This chapter explores the critical intersection of deaf education, sign language, and
STEM subijects, focusing on the work of the Scottish Sensory Centre (SSC) BSL Glossary
project. As we delve into the challenges and opportunities in teaching complex
scientific concepts to deaf students, we will examine the evolution of sign language
glossaries, the meticulous process of developing scientific signs, and the impact of
these resources on conceptual understanding. From the visualisation of geographical
landscapes to the representation of abstract chemical processes, this chapter
illuminates how carefully crafted signs can bridge the gap between written scientific
terminology and visual-spatial cognition. By exploring examples across various
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scientific disciplines, we aim to demonstrate the transformative potential of sign
language in STEM education for deaf learners.

1.2. Teaching Science and STEM Through Conceptual Understanding
https://edin.ac/3Ls4Xin

Driver et al. (2014) found that providing learners with opportunities to conduct
experiments, engage in ‘hands-on’ activities and dialogue with their peers is essential.
These experiences are crucial for facilitating understanding. More successful learners
typically grow up in environments where they can understand those around them and
use that knowledge to make connections when they start school, which is critical for
their development. Deaf students, however, require more examples to give them the
necessary understanding to grasp concepts (Jones 2014; Flores & Rumjanek, 2015;
Cameron et al., 2017). Driver et al. (1994, 2014) emphasise that children need access
to dialogue to interpret and understand experiments and activities collaboratively.
Teachers play a vital role in this process by guiding students and contributing to their
construction of meaning. This cannot be done solely by the students themselves.
Teachers should ask probing questions like ‘Why?’ to assess students’ understanding
and to stimulate their critical thinking.

Deaf people often have fewer opportunities to participate in these experiences and
environments, most effective when all parties can communicate fluently in sign
language. This allows for the development of an understanding of scientific concepts
(Lindahl, 2015; Mercer & Littleton, 2007). We all construct our way of looking at the
world, and it is important to ask children about their perspectives, which may differ
from our own. By understanding a pupil’s ‘worldview,” educators can transform their
thinking through teaching. Students need opportunities to explore the world outside
the classroom. Reading about concepts isn’t enough; they require access to learning
in diverse learning modalities, such as pictures, experiments, outdoor activities, and
films (Jones, 2014; Raven & Whitman, 2019; Lindahl, 2015 & 2021). Deaf children need
the entire learning experience, with a strong emphasis on dialogue. This
comprehensive approach ensures they develop a complete grasp of concepts.
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1.3. History and Evolution of Sign Language Glossaries
https://edin.ac/3ScSFlc

Sign language glossaries/lexicons have existed for many years (McKee & Vale, 2017).
Initially, signs were recorded in books using drawings of the signs accompanied by
written words. Then came photos — still images, often arranged in sequence to show
the movements of the signs. Some images included notations to indicate the
handshape and movements, sometimes with arrows to show direction (Brien, 1993).

With the advent of film, the movement of signs could be captured more fully. VHS and
video recorders were later followed by CD-ROM(Signs for Education — the definite BSL
reference for education), DVDs. Now, the internet allows signs to be filmed and
uploaded to websites which can be seen globally (Scottish Sensory Centre’s STEM in
BSL glossary:
https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence.html). In
the past, signs in books were static, but today, video clips can be easily replaced and
updated. The web has also enabled glossaries to grow in size.

Lang was the first to set up a website of signs linked to STEM at the National Technical
Institute for the Deaf at Rochester Institute of Technology (NTID/RIT) (Lang et al.,
2007). Since then, glossaries have grown significantly. In 2023/24, the Global Year of
STEM Sign Language Lexicons brought together various groups developing glossaries
worldwide to share their work (Global Year of STEM Sign Language Lexicons 2023-
2024). This gathering allowed us to meet, support one another, and discuss our
strategies.Different groups create their glossaries in various ways (Cohen, 2024). Some
use a ‘self-load’ method, inviting individuals to film and post signs for specific terms,
thereby creating a corpus of signs. Other groups follow a more collaborative approach,
where signs are identified, recommended or developed through group discussions
(SsC signs development project:
https://www.ssc.education.ed.ac.uk/BSL/index.html#top ) (Cameron et al., 2019;
O'Neill et al., 2020). Some glossaries have been compiled by sign language interpreters
or educators. Uploading video files to the web has made this process much more
manageable. Look at the list of different glossaries from around the world, all aiming
to facilitate better access to STEM for deaf people (Table 1).


https://gallaudet.edu/science-technology-accessibility-mathematics-public-health/2023-global-year-of-stem-sign-language-lexicons/
https://gallaudet.edu/science-technology-accessibility-mathematics-public-health/2023-global-year-of-stem-sign-language-lexicons/

o
STEMSIL

1.4. Purpose of SSC BSL Glossary
https://edin.ac/46cz0nl

The Scottish Sensory Centre (SSC)’s BSL Glossary was established following research
conducted by Dr Mary Brennan in 2000. At that time, she researched sign linguistics
at the University of Edinburgh and investigated the challenges deaf pupils faced
accessing national examinations. Mary subsequently wrote to the Scottish
Qualifications Authority (SQA) to request fair access for deaf students, proposing that
teachers be allowed to sign the exam questions and that deaf students give their
answers in sign language (Brennan, 2000). The SQA approved this in 2000, but then
Mary quickly identified a significant issue — a shortage of signs for the STEM
vocabulary.

In response, Mary collaborated with Gerry Hughes, a deaf maths teacher, and
together, they created a pilot glossary for Maths, which initially contained 90 signs
(https://www.ssc.education.ed.ac.uk/BSL/maths.html). The response to the new
glossary was positive and demonstrated the need for a more comprehensive
one. Since then, with intermittent funding, the SSC glossary has continued to expand.
Further demonstrating the demand for a glossary, research commissioned by the
Royal Society in 2018 surveyed the number of disabled students pursuing STEM
subjects in Higher Education in the UK over ten years from 2007/8 to 2018/9 (Joice &
Tetlow, 2021). For deaf students, the figure was only 0.3% in 2008, and 10 years later,
it was found that whilst the number of disabled students had increased overall, the
percentage of deaf students remained at 0.3%.

Number of disabled and deaf students in 2007/2008 and
2018/2019 (11 years)

35000 15.5%

15000 7.5%

Figure 1: Graph showing the number of disabled students studying STEM in Higher Education over ten years
(2007/8 to 2018/19). (Joice & Tetlow, 2021).
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This stagnation persisted despite advancements in support, such as the Disabled
Students’ Allowance (DSA) and access to sign language interpreters and notetakers.
The primary cause seemed to be the limited access to STEM sign vocabulary for deaf
students at school and university. Educators and sign language interpreters need
access to a glossary of STEM signs to support deaf students better (Cameron et al.,
2017).

In the United States, Lualdi et al. (2023) wrote an article about deaf people’s
experiences of learning and working in the field of STEM. This article also identified a
lack of access to appropriate signs for STEM terms as one of the barriers. This barrier
also included interpreters not having the signs, which meant it was hard for deaf
students to discuss their work with fellow students and colleagues. These experiences
demonstrate the importance of sign glossaries.

1.5. Structure and Content of the SSC BSL Glossary
https://edin.ac/3yesfFc

The SSC Glossary Website homepage
(https://www.ssc.education.ed.ac.uk/BSL/index.html#top ) features a number of
tiles (pictures/graphics), each representing different topics such as Astronomy,
Biology, Chemistry and Geography. Clicking on the tile will expand to show
(https://www.ssc.education.ed.ac.uk/BSL/environmenthome.html):

e Left Side: A list of subtopics

e Right Side: An A-Z menu for alphabetical browsing.

Alphabetical List This A-Z list is useful if you encounter a scientific term and need the
equivalent sign. For example, to find the scientific term starting with ‘B’, click on ‘B’
and select from the dropdown menu.

Topic-Based Signs. On the other side of the screen, signs are grouped according to
topic within the subject area
(https://www.ssc.education.ed.ac.uk/BSL/environment/themel.html). Clicking on a
tile brings up terms related to that topic along with the corresponding signs, which
can be helpful for:

Teachers teaching a specific topic

Interpreters learning relevant signs of a specific topic

Students learn from home and can watch the explanation that goes with the
signs.

Video Demonstrations Clicking on any scientific terms brings up a video of the
sign. Below the video is an option for ‘explanation’ or ‘definition’, which, when
clicked, shows a signed explanation of the term along with a written English


https://edin.ac/3yesfFc
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translation. This makes the Glossary a bilingual resource, with signs for terms, signed
definitions and English translations. The signed definitions are not translations from
written texts in textbooks; rather, the text is a translation of the signed videos (O'Neill
et al,, 2019).

Example videos In 2008, we asked students what they thought of the glossary when
they were looking at it; they told us they wanted more video examples so that they
could see how the signs related to science in the lab or outside (for example, actual
topography), i.e., real-life examples. So, we’ve added another link under the term that,
when clicked, brings up these example videos (Cameron et al, 2012, 2017).

A short reel showing different examples from the SSC Glossary (Table 2).

Distillation ,

Corrie,

Stamen,

Mixture and Separation,
Reflecting Telescope,

Feedback and Use Feedback from users (students, teachers and interpreters) has been
positive, highlighting that the signs, explanations, and examples enhanced
understanding of scientific concepts for young people (Cameron et al., 2017). Teachers
have said the Glossary has helped them teach and how to explain the concepts
through sign language. The same has been true for interpreters working in schools and
universities, who have been uncertain about signing STEM content. Teachers have
also been using the signs in the SSC glossary in their lessons because they found they
help their non-deaf pupils’ to understand complex scientific concepts (Hickman,
2013). On-screen presenters also provided interpretations using signs from the
glossary.

1.6. Visualising STEM Concepts: The Sign Development Process
https://edin.ac/3Wsfhgr

This section will explain the SSC’s sign development process. The sign development
team consists of individuals from three types of expertise and backgrounds: deaf
scientists who hold degrees or PhDs in their respective fields and possess in-depth
knowledge of science and STEM; deaf educators/teachers who are proficient in
teaching and explaining scientific concepts; and sign linguists, who contribute
theoretical insights into signed languages and their linguistic principles. All team
members have grown up using sign language, bringing a combination of experiences
to the discussions (Cameron et al., 2017; O’Neill et al., 2019). Eight or nine people are
invited to join the sign development team for each project. The process begins by
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examining scientific terms used in the school curricula, which are then grouped into
themes or sub-topics. A term is selected, and the team reviews existing signs that may
already be in use. If a sign does not exist for a term, it is identified for development.

This sign development process revolves around group discussions, during which team
members share their thoughts and ideas on visually representing the term in sign
language. Discussions focus on what the term visually represents, its function, and
how it should be expressed. Importantly, the process does not centre on the written
word or scientific term itself but on creating a sign that visually captures the
underlying idea or concept.

For example, consider the term “B-L-A-C-K H-O-L-E”. Black holes form when a
massive star dies and undergoes a supernova. During a supernova, intense
gravitational forces cause the star’s core to collapse inward. The written term ‘Black
Hole’ implies something that is ‘black’ in colour and has a ‘hole’ init. However, simply
combining the signs “BLACK” and “HOLE” would be inappropriate. Instead, the
scientific sign ‘BLACK HOLE’ visually represents the process of star collapse that leads
to the formation of these black holes.

The sign development team carefully considers the meanings of selected terms. Once
an idea for a sign is agreed upon, it is captured on video and uploaded to a private MS
Team site. Members can then comment, suggest improvements, or approve of the
sign. Additionally, deaf children are shown the signs and asked for feedback on
clarity.

Once a sign successfully navigates this process, it is refilmed, edited and posted on the
SSC BSL glossary website. The website features videos of term definitions, each
accompanied by a written English translation, making it a bilingual resource. Visitors
can watch the sign and read the text. Pictures that visually match the sign
representation have also been added. We also create Example videos to show how
the signis used in sentence. After completion, the content becomes publicly available.
A photograph of the BSL glossary team is shown at the end of this video.

10



=5
STEMSIL

BSL Glossary Team
John Denerley

Rob Rattray

Gerry Hughes
Pauline Jordan
Ixone Saenz Paraiso
Mary Frances Dolan
Cathie Birch

Liam McMulkin
Alasdair Grant

Dr Colin Dunlop
Mark McQueen
John Brownlie

Ben Glover

Nicola Jackson
Claire Cummings
Billy Jack Gerrard
Dominic Fox

Derek Rodger

Sanchu lyer

Tina Kelberman

Dr Audrey Cameron

John Wilson

Gary Quinn

Dr Mark Fox

Lee Robertson

Janet Wardle-Peck
Claire Leiper

Jaabir Mahmoud
Katherine O’Grady
Kirsty Vessey

Ben Fletcher

Ken O’Neill

Malcolm Sinclair

Frankie McLean

Rebecah Taylor

Sujit Sahasrabudhe

Tania Allan

11



1.7. Subject-Specific Sign Development: Examples from Various STEM
Fields

https://edin.ac/4cltNXI

Having explored the general process of sign development, we now turn to specific
examples from different STEM disciplines. These examples illustrate how the
principles of visual representation and conceptual understanding are applied across
various scientific domains. We will examine sign development in Geography, Biology,
Astronomy, and Chemistry, each presenting unique challenges and opportunities.
Through these examples, we aim to demonstrate how signs are crafted to represent
physical landscapes, biological structures, celestial bodies, and abstract chemical
concepts. By exploring these diverse fields, we can better understand the versatility
and power of sign language in conveying complex scientific ideas.

1.7.1 Geography: Representing Landscapes and Topography
https://edin.ac/4cOAWPw

Geography can be incredibly visual as a subject because the landscape is observable.
Signs can show the topography of a place, such as aU-shaped valleyor
an aréte or corrie — caused by glacial erosion. They can also represent rivers. There
are many ways that the signs can help us visualise the landscape, including more gently
sloping valleys, U-shaped orV-shaped valleys with tributaries feeding into the
river. The contours can show how steep the slopes are. On the map, the slopes are
steeper if the contours are close together. If they are wide apart, the slope becomes
less steep. The shape and movement of the signs can be changed to represent these
features and demonstrate the topology. Here are examples. i. topography, ii. map
reading (table 2).

1.7.2 Biology: Visual Representation of Location and Function

https://edin.ac/3LvgFZy

Whereas chemistry, as a subject, often deals with abstract concepts (De Jong & Taber,
2007), biology is more visual, involving tangible elements that we can see (Host,
2022). That said, in developing/creating signs, we still need to think very carefully
about where, for example, the organs are in the body, what their actual shape is like,
and what their function is.

For example, using the sign for HEART it is necessary to show its location in the body,
what it looked like as an organ, where blood flows in (e.g. vena cava) and out (e.g.
aorta), and how it fits into the circulatory system. Proper referencing of the sign in the
right place is essential to avoid inaccuracies.

12
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The same careful consideration applies to plants. The team spent time examining plant
structures and photographs to ensure accuracy. In this picture, you can see the
reproductive part of the flower with the stigma and ovules.

Terms like ‘stem cell’ required particular attention. The signs are a representation of
our understanding of a scientific concept. Our bodies contain stem cells (STEM CELL)
- these cells have no function other than the capacity. Our initial sign for stem cells
was ‘STEM CELL’, showing the transformation. However, upon consulting with a stem
cell research expert, we learned that the initial sign was inaccurate because it depicted
differentiation, not the potential of stem cells. Consequently, we revised the sign to
accurately represent the potential for change (new STEM CELL sign). We must be
mindful of ensuring the signs accurately reflect the location in the body, appearance,
and function of the biological organs they represent. Unlike spoken and written
language, which can be vague, signs must be precise, as errors are immediately
noticeable. The process of creating signs involves extensive discussion, the use of
pictures and asking numerous questions to ensure correctness.

1.7.3 Astronomy: Designing Planetary
https://edin.ac/3Ya6Xn4
When thinking about creating signs, we focused on the visual aspects. However, we

were also influenced by the character or properties of the objects. An example of this
can be seen in the Astronomy in BSL Glossary (Cameron, 2015).

There are eight planets in the Solar System. The first four planets are called the inner
planets, followed by an asteroid belt, and the other four are called the outer
planets. During the sign development workshops, we created a chart to identify the
differences between the planets.
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Figure 2: Chart of the solar system planets and their properties. We used the properties in red to help develop the
new signs. The planet nearest the Sun is Mercury. The sign we created is MERCURY, which incorporates the sign
for HALF. This is because one side of Mercury is incredibly hot, whereas the other is bitterly cold. The side that
faces the Sun is exposed to intense heat, whereas the side facing away from the Sun is intensely cold. Mercury
rotates very slowly, and due to its little or no atmosphere, it loses any heat that it gains very quickly (NASA
Science n.d.).

The next planet out from the Sun is Venus (signs VENUS). The use of a non-manual
feature (NMF) (puffed cheeks) represents the incredibly dense atmosphere, which is
made up of heavy carbon dioxide gas (CO2) (NASA Science n.d.).

Next comes Earth, for which there is already a common sign (EARTH) in the deaf
community. However, from an astronomy perspective — looking at the Earth from
space, we focused on the presence of water (NASA Science n.d.). Therefore, we
incorporated the sign for WATER into the sign for EARTH.

Then comes Mars, known as ‘The Red Planet ‘ (NASA Science n.d.). Instead of focusing
on its colour, the glossary team chose a different characteristic: Mars has
two moons, (MARS). This feature of having two moons is incorporated into its sign.

The next four planets are gaseous giants, while the first four planets are solid and
made of rock. This is represented by the closed handshape/fist, which forms the
shared base handshape in MERCURY, VENUS, EARTH and MARS. The base sign changes
to an open handshape for the four gas giants.
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Figure 3: Closed (i) and open (ii) handshapes representing (i) rocky and (ii) gaseous planets.

Jupiter is next (JUPITER), and the open fingers of the right hand represent Jupiter's
characteristic stripes (NASA Science n.d.). Saturn (SATURN) follows, with the right
hand representing the wide ring system of ice particles with rocky debris and dust
circulating the planet (NASA Science n.d.).

Moving along, we come to Uranus. We believe that an Earth-sized object collided with
Uranus long ago, knocking it off its original angle of rotation (NASA Science, n.d.). It’s
the only planet in our solar system that rotates at a 90-degree angle compared to the
others. This unique angle of rotation is shown in the sign by changing the orientation
of the sign (URANUS). The right hand represents the rings of Uranus, which are smaller
than those of Saturn (SATURN).

Finally, we come to Neptune, a very cold planet. Neptune has sixteen known moons,
but one (Triton) of them orbits Neptune in the opposite direction to the others (NASA
Science, n.d.). This is shown by the 15 moons represented by open fingers moving in
one direction and a single finger moving in the opposite direction to represent the
moon with the opposite orbit.

These examples demonstrate the sign development team’s thinking about visuality
and the properties or characteristics when creating the signs. We have tried to create
links between.

1.7.4 Chemistry — Representing Abstract Concepts
https://edin.ac/3Sbxnkp

Chemistry is often challenging to teach because it is abstract, conceptual and
theoretical, unlike biology, where one can see animals and plans, or physics, where
forces and their impacts are observable, such as direction. Chemistry often involves
invisible processes (Johnstone, 1991; Taber, 2013; Reid, 2021; Soeharto & Csapg,
2021). For instance, mixing two colourless solutions can suddenly produce a yellow
precipitate, but we can’t see how or why that happens. Chemistry relies heavily on
theoretical concepts and modelling (Taber, 2012).

Extensive research in Chemistry education highlights the importance of visual
representation, including drawings, pictures, gestures, and signs, to help students
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understand these abstract concepts (Gates, 2017; Kiernan et al 2020, 2024). One
useful framework is Johnstone’s Triangle, which examines chemistry on three levels
(Johnstone, 1991; Taber, 2013; Reid, 2021):

1. Macroscopic Level — Observable phenomena. For example, mixing two colourless
solutions to form a yellow precipitate or the colour and smell of toast when it pops
out of a toaster.

2. Microscopic Level — Atomic and molecular level. This involves visualising ATOMS,
PARTICLES and MOLECULES and understanding their interactions, bonding and
behaviour.For example, understanding how heating affects bonds within structures.

3. Symbolic Level — Use of symbols and formulas. This includes chemical equations
and symbols like ‘C’ for Carbon; in an equation, ‘+ O’ becomes CO;, representing
chemical reactions and compositions.

Teaching Chemistry requires addressing all these levels. Demonstrating experiments
and active learning helps link the observable (Macroscopic) with the unseen
(Microscopic) and the symbolic representation in equations and formulae. Signs can
help to make things clearer at the microscopic level (Clark et al., 2021; Cameron et al.,
2017).

For example, the sign for ATOM involves moving the index finger of the dominant right
hand around a closed left fist, representing an ELECTRON orbiting a nucleus. Using a
single finger in the horizontal plane looks like the symbol for ‘negative’ (-) and
indicates that the electron has a negative charge. The closed left fist in the sign
represents the nucleus with a positive charge, which attracts the negatively charged
electron, preventing it from leaving its orbit. We don’t know where the electrons are
at any given moment, but you can find them within the orbitals. This sign can be
modified to show different orbital structures, such as s- and p-orbitals. In general, we
use the ATOM sign to show the movement of electrons, and as one studies further,
the shape of different orbitals can be modified.

The NUCLEUS has two types of particles: NEUTRONS, represented by a symbol for zero
due to their neutral charge, and PROTONS, which is positively charged. Within the
nucleus, we have NEUTRONS and PROTONS. Combined with the ELECTRONS, we have
the sign for ATOM.

The sign ATOM is a visual representation that can be further modified to show, for
example, the exchange of electrons between atoms in a CHEMICAL REACTION such as
a REDOX REACTION. This sign illustrates the loss of an electron from one atom
(OXIDATION) and the gain of an electron by another atom (REDUCTION) during the
reaction. Research indicates that such visual models are crucial for understanding
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Chemistry, and the flexibility these signs offer can aid that understanding.
Representing theoretical ideas through pictures, models, experiments, and written
formulae aids in comprehending this complex subject.

1.7.5 Family of Signs: Aiding Conceptual Understanding
https://edin.ac/4bTtck6

The sign development team thought long and hard about creating links between the
signs we created to form what we call a ‘family’ of signs, which together build an
understanding of the broader concept (Cameron et al., 2017; Quinn et al., 2021). For
example, consider the terms ‘Mass’ and ‘Weight’. We already have a sign in common
use, WEIGHT, but the sign is different in the context of STEM. We focused not on the
deaf community's everyday use of the word ‘Weight’ but on its scientific context.
‘Mass’ differs from ‘Weight’; everything is made up of mass - my clothing, body, the
air around us, tables, etc. ‘Weight’, on the other hand, is a force acting on mass, and
that force is ‘Gravity’. The sign for mass is this (signs MASS), which represents the
matter from which everything is made, and this is the sign for GRAVITY. If we combine
these two signs (MASS + GRAVITY), we get WEIGHT, which demonstrates the concept:
MASS + GRAVITY = WEIGHT.

By using the sign, we can show the force of gravity, for example, here on Earth,
compared to on the moon, where the gravitational pull is less. In this instance, the sign
is articulated more slowly — we see the impact on weight in the film of astronauts
bouncing along on the surface of the moon. What’s important to note is that the mass
remains the same here and on the Moon — the gravitational pull is different: GRAVITY
(on Earth) and GRAVITY (on the Moon). Children understand this when they see the
signs, and that’s significant.

Another example of a “family’ of signs is in Chemistry, specifically within the theme of
chemical reactions. Take a look at the following different chemistry terms and
variations in signing.

CHEMICAL REACTION - REACTANT - PRODUCT - NON-REVERSIBLE REACTION -
REVERSIBLE REACTION - ENDOTHERMIC REACTION - EXOTHERMIC REACTION

These are all different terms, yet they are connected to one another. The morphology
of the sign varies slightly to represent each chemistry term, but notice that every sign
has the same central movement (from left to right), and each introduces a slight
variation to create a new meaning/product as the sign concludes on the right. The
movement follows the direction of a written chemical equation — this left-to-right
movement is maintained throughout. Movement can also be modified to represent
the speed of the reaction, whether it be fast or slow. It can also be modified to show
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the presence of heat being given off — EXOTHERMIC, or a drop in temperature
occurring during the reaction — ENDOTHERMIC. Throughout all of these modifications
in the morphology, the placement and movement are maintained — creating a
connection between signs, which helps to construct a sound conceptual
understanding.

1.8. Impact of Sign Glossaries on Learning

1.8.1 Conceptual Understanding: Electricity — AC vs DC Concept
https://edin.ac/46eUm3)J

Does access to the STEM Sign Glossary aid conceptual understanding? In a small
research project using a linguistic ethnographic methodology to explore the use of
sign language in dialogue, | had the opportunity to observe and video record pupil
discussions in the science classroom (Kusters & Hou, 2020). One part of the process
that drew particular attention was a group of pupils who had been instructed to
research and prepare a presentation on the differences between AC (alternating
current) and DC (direct current) as part of the topic on ‘electricity’. The students went
home and returned the following day with their presentations.

While presenting their research to their peers, the first student referred to the word
‘current’ on their slides. At this point, the student seemed a little uncertain about the
meaning of the word and signed CURRENT in its more usual sense, meaning ‘now’ or
‘currently’ — clearly a different meaning. The glossary includes signs for ‘Current’, ‘AC’
and ‘DC’ to represent the flow of electricity along a wire; DC represents the electrical
current flowing in one direction only, while AC represents current flowing in both
directions. This pupil didn’t know these signs, leading to an incomplete understanding
of the concept in this context and signing CURRENT as ‘now/currently’.

The pupil then asked the class teacher for the sign for the scientific term, and when
the teacher signed CURRENT, the pupil understood. The next student to present used
the sign (electrical) CURRENT correctly. This demonstrates the importance of having
the appropriate sign as an aid to understanding (Lang et al., 2007; Kurz & Pagliaro,
2019; Enderle et al. 2020; Cameron, 2024).

1.8.2 Vocabulary Access: Teaching Density
https://edin.ac/3z20QISb

A different group activity illustrates how using a sign glossary can improve conceptual
understanding (Cameron, 2024). In a class of younger pupils (five to six years old)
learning about the terms ‘float’ (FLOAT) and ‘sink’ (SINK), the teacher instructed the
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children to collect objects and drop them into a tank of water, predicting whether each
item would float or sink.

One pupil picked up an object, dropped it into the tank, and was surprised when it
floated instead of sinking. Throughout the activity, some items floated while others
sank. After the activity, the teacher explained that whether an object floats or sinks is
determined by ‘density’ (DENSITY), a sign from the SSC glossary. The teacher clarified
that if an object is dense, it will sink; if it is not, it will float. Density is a combination of
mass and volume - objects with less mass relative to their volume will float, while
those with more mass (particles closely packed together) will sink, like metal.
However, with more space between particles, wood will float, as seen when a tree
trunk falls in water.

The teacher explained these concepts to the five- and six-year-olds. At the end of this
lesson, the teacher asked again, “Why do some objects float and others sink?”. They
responded using the sign DENSITY from the glossary, demonstrating that access to the
sign glossary and vocabulary in sign language can aid conceptual understanding.

1.8.3 Facilitating Understanding Through Sign and Dialogue
https://edin.ac/3zVzYse

Lindahl (2015 & 2021) found that sign language, along with text and pictures, can
facilitate access to conceptual understanding. These elements help, and signs are
particularly important as part of the dialogue. Lindahl discovered that while access to
sign vocabulary was important, it was not sufficient on its own. More is needed to
facilitate discussion and the construction of meaning. Lindahl also emphasises the
importance of teachers understanding these signed discussions so that they can
recognise when pupils are using signs that indicate their understanding.

1.9. Conclusion
https://edin.ac/3Y8PkDX

The development and implementation of sign language glossaries for STEM subjects
represent a significant advancement in deaf education. As we have seen throughout
this chapter, the SSC BSL Glossary project and similar initiatives worldwide are not
merely about translation; they are about creating visual representations that capture
the essence of scientific concepts. The process of developing these signs involves
deep consideration of scientific principles, visual representation, and linguistic
structures, resulting in a powerful tool for conceptual understanding. The examples
from geography, biology, astronomy, and chemistry demonstrate how well-designed
signs can make abstract concepts more tangible and accessible. Moreover, the
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observed impacts on classroom learning underscore the importance of these
resources. As we move forward, continued research, collaboration between deaf
scientists, educators, and linguists, and the integration of sign language resources into
STEM curricula will be crucial in ensuring equal access to scientific knowledge for deaf
students. This work not only enhances education for deaf learners but also enriches
the field of science communication as a whole, demonstrating the unique power of
visual language in conveying complex ideas.
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Table 1: Existing Global STEM Sign Language
Dictionaries/Glossaries/Lexicons

*These lexicons have STEM within a large lexicon (not solely for STEM).

Name Country Language Website
AfricaSign Africa Various https://www.africa-sign.org/
ASL-Clear USA American Sign https://aslclear.org/

(Framingham) Language
ASL-Core USA American Sign https://aslcore.org/
Language
(Rochester)
ASL-STEM USA American Sign https://aslstem.cs.washington.edu/
(Washington) Language
Astronomy France (book) French Sign http://sion.frm.utn.edu.ar/iau-
Language inclusion/wp-

content/uploads/2017/11/Dictionnaire-
Frances.pdf

Atomic Hands

USA

American Sign
Language

https://atomichands.com/

Austin Community

USA (Austin)

American Sign

https://accmultimedia.austincc.edu/sign

College Language s/

British Sign United British Sign https://www.ssc.education.ed.ac.uk/BSL

Language Kingdom Language /

Glossaries of (Edinburgh)

Curriculum Terms

Chemistry for High  Greece Greek Sign https://prosvasimo.iep.edu.gr/el/gia-

School Students; Language mathites-me-provlimata-akohs/xhmeia-

Computer Science me-nohma-b-g-gymnasiou-gia-kofous-
kai-varikoous-
mathites?fbclid=lwAROk1UAwuUCXs4M67
v7vwv6ecVf-
WtHJrDk7iRIYdVccDK1HRIL_SzqqZxi2Q
(available on CD-ROM)

Cité des Sciences France (Paris) French Sign https://www.cite-sciences.fr/fr/ma-cite-

(Museum) Language accessible/sourds-et-
malentendants/ressources/signaire-Isf/

DeafTEC USA American Sign https://deaftec.org/stem-

(Rochester) dictionary/about-the-project/
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Dictio* Czech Republic  Many sign https://www.dictio.info/
languages
Elix* France French Sign https://dico.elix-Isf.fr/
Language
Greek Sign Greece Greek Sign https://www.ocean.upatras.gr/gsl/
Language* Language
GEIL Libras Study Brazil (Porto LIBRAS: https://www.youtube.com/channel/UCZ
and Innovation Alegre) Brazilian Sign ZtQOxbvuWdNhbJ_a5bqg2g/playlists
Group (Pontifical Language
Catholic University
of Rio Grande do
Sul)*
ISLEVL - Indian India Indian Sign https://islevl.org/
Sign Language (Chandigarh) Language
Enabled Virtual
Lab
INJS Bourg-la- France French Sign INJS Bourg-la-Reine
Reine Language 3 ) )
https://ijs.92.dico.free.fr/maths/index.h
tml
INSA (civil France French Sign http://devv4.insa-
engineering) (Toulouse) Language toulouse.fr/fr/formation/glossaire-gc-
en-Isf.html
Irish Sign Ireland (Dublin) Irish Sign https://www.dcu.ie/isIstem
Language STEM Language
Glossary
Les Doigts Qui France (Dijon) French Sign ttps://Idgr.org/mots-de-geologie-en-Isf/
Révent (geology) Language
LexiQue Canada LsQ https://lexiquelsg.ca/theme/science-et-
(Quebec) technologie/
Madrasati Signs Morocco Moroccan Sign https://madrasati-signs.org/

Platform

Language

New Zealand Sign

New Zealand

New Zealand

https://www.nzsl.nz/

Language Sign Language

Dictionary*

Ocelles* France (Paris) French Sign https://ocelles.inshea.fr/fr/accueil
Language
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Projeto Surdos - Brazil (Rio de Libras https://www.youtube.com/@projetosur
UFRJ Janeiro) dos/playlists
Quantum ASL USA (Harvard American Sign https://www.youtube.com/channel/UC3
University) Language etnnsIxGpH89XgojqEONg
Shuwaemon Japan Japanese Sign www.shuwaemon.org
Language
Sign2MINT Germany German Sign https://sign2mint.de/
Language
Sign “Maths” France LSF signmaths.univ-tlse3.fr
(Toulouse)
SignBank* Australia Auslan https://auslan.org.au/
Signing Science USA American Sign https://signsci.terc.edu/index.html
and Math (Cambridge) Language
Dictionaries (Avatar)
Slovnik Czech Republic  Czech Sign https://slovnikczj.vutbr.cz/
(Brno) Language
Spread the Sign* Global Different sign https://www.spreadthesign.com/en.gb/
languages search/
STIM Sourd France France LSF www.stimsourdfrance.org
Texas Math Sign USA (Texas) American Sign https://www.texasdeafed.org/Page/516
Language Language
Dictionary
UVED (sustainable  France French Sign https://www.uved.fr/fiche/ressource/gl
development) (Toulouse) Language ossaire-du-developpement-durable-en-

langue-des-signes-francaise-Isf

Complied by the Global STEM sign language lexicon team in 2023.
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Table 2: STEM Signs in BSL

Sign Source
Alternating https://www.ssc.education.ed.ac.uk/BSL/physics/alternating.html
current
Aorta https://www.ssc.education.ed.ac.uk/BSL/environment/aorta.html
Aréte https://www.ssc.education.ed.ac.uk/BSL/geography/arete.html#start

Asteroid belt

https://www.ssc.education.ed.ac.uk/BSL/astronomy/asteroidbelt.html

Atom

https://www.ssc.education.ed.ac.uk/BSL/chemistry/atom.html#start

Atria/atrium

https://www.ssc.education.ed.ac.uk/BSL/environment/atria.html

Black hole https://www.ssc.education.ed.ac.uk/BSL/astronomy/blackhole.html

Bonding https://www.ssc.education.ed.ac.uk/BSL/chemistry/bond.html#start

Carnivores https://www.ssc.education.ed.ac.uk/BSL/environment/carnivores.html

Chemical https://www.ssc.education.ed.ac.uk/BSL/chemistry/chemreact.html#sta

reaction rt

Circulatory https://www.ssc.education.ed.ac.uk/BSL/environment/dualcirculatorysy

system stem.html|

Contours https://www.ssc.education.ed.ac.uk/BSL/geography/contours.html#star
t

Corrie https://www.ssc.education.ed.ac.uk/BSL/geography/corrie.html#start

Current https://www.ssc.education.ed.ac.uk/BSL/physics/current.html#start

Density https://www.ssc.education.ed.ac.uk/BSL/physics/density.html

Differentiation
(stem cell)

https://www.ssc.education.ed.ac.uk/BSL/biology/differentiation.html#st
art

Direct current

https://www.ssc.education.ed.ac.uk/BSL/physics/directcurrent.html#sta
rt

Distillation

https://www.ssc.education.ed.ac.uk/BSL/chemistry/distillation.html#sta
rt
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Earth https://www.ssc.education.ed.ac.uk/BSL/astronomy/earth.html
Electricity https://www.ssc.education.ed.ac.uk/BSL/physics/electricity.html
Electron https://www.ssc.education.ed.ac.uk/BSL/chemistry/electron.html#start

Endothermic

http://www.ssc.education.ed.ac.uk/BSL/chemistry/endothermic.html#st

reaction art

Exothermic http://www.ssc.education.ed.ac.uk/BSL/chemistry/exothermic.html#sta
reaction rt

Giant planet https://www.ssc.education.ed.ac.uk/BSL/astronomy/giantplanet.html
Glacier https://www.ssc.education.ed.ac.uk/BSL/geography/glacier.html#start

Gravitational
pull

http://www.ssc.education.ed.ac.uk/BSL/physics/gravitational.html

Gravity

http://www.ssc.education.ed.ac.uk/BSL/physics/gravity.html#start

Inner planets

https://www.ssc.education.ed.ac.uk/BSL/astronomy/innerplanets.html

Interdependen | https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence
ce .html

Interdependen | https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence
ce .html

Interdependen | https://www.ssc.education.ed.ac.uk/BSL/environment/interdependence
ce definition d.html

Jupiter https://www.ssc.education.ed.ac.uk/BSL/astronomy/jupiter.html#fstart
Map https://www.ssc.education.ed.ac.uk/BSL/geography/map.html#start
Mars https://www.ssc.education.ed.ac.uk/BSL/astronomy/mars.html#start
Mass http://www.ssc.education.ed.ac.uk/BSL/physics/mass.html

Mass https://www.ssc.education.ed.ac.uk/BSL/physics/mass.html#start
Mercury https://www.ssc.education.ed.ac.uk/BSL/astronomy/mercury.html#star

t
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Mixture https://www.ssc.education.ed.ac.uk/BSL/chemistry/mixture.html#start

Molecule https://www.ssc.education.ed.ac.uk/BSL/chemistry/molecule.html#start

Moon https://www.ssc.education.ed.ac.uk/BSL/astronomy/moon.html

Neptune https://www.ssc.education.ed.ac.uk/BSL/astronomy/neptune.html#star
t

Neutron https://www.ssc.education.ed.ac.uk/BSL/chemistry/neutron.html#start

Non-reversible
reaction

http://www.ssc.education.ed.ac.uk/BSL/chemistry/nonrevers.html#start

Nucleus

https://www.ssc.education.ed.ac.uk/BSL/chemistry/nucleus.html#start

Outer planets

https://www.ssc.education.ed.ac.uk/BSL/astronomy/outerplanets.html#
start

Ovules https://www.ssc.education.ed.ac.uk/BSL/biology/ovules.html

Particle http://www.ssc.education.ed.ac.uk/BSL/chemistry/particle.html#start

Planet https://www.ssc.education.ed.ac.uk/BSL/astronomy/planet.html

Product http://www.ssc.education.ed.ac.uk/BSL/chemistry/product.html#start

Properties https://www.ssc.education.ed.ac.uk/BSL/chemistry/properties.html#sta
rt

Proton https://www.ssc.education.ed.ac.uk/BSL/chemistry/proton.html#start

Reactant http://www.ssc.education.ed.ac.uk/BSL/chemistry/reactant.html#start

Reflecting https://www.ssc.education.ed.ac.uk/BSL/physics/reflecting.html

telescope

Reversible http://www.ssc.education.ed.ac.uk/BSL/chemistry/reversible.html#start

reaction

River https://www.ssc.education.ed.ac.uk/BSL/geography/river.html#start

Saturn https://www.ssc.education.ed.ac.uk/BSL/astronomy/saturn.html#start

Sign Source
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https://www.ssc.education.ed.ac.uk/BSL/astronomy/neptune.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/neutron.html#start
http://www.ssc.education.ed.ac.uk/BSL/chemistry/nonrevers.html#start
https://www.ssc.education.ed.ac.uk/BSL/chemistry/nucleus.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/outerplanets.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/outerplanets.html#start
https://www.ssc.education.ed.ac.uk/BSL/biology/ovules.html
http://www.ssc.education.ed.ac.uk/BSL/chemistry/particle.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/planet.html
http://www.ssc.education.ed.ac.uk/BSL/chemistry/product.html#start
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http://www.ssc.education.ed.ac.uk/BSL/chemistry/reactant.html#start
https://www.ssc.education.ed.ac.uk/BSL/physics/reflecting.html
http://www.ssc.education.ed.ac.uk/BSL/chemistry/reversible.html#start
https://www.ssc.education.ed.ac.uk/BSL/geography/river.html#start
https://www.ssc.education.ed.ac.uk/BSL/astronomy/saturn.html#start
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Solar system

https://www.ssc.education.ed.ac.uk/BSL/astronomy/solarsystem.html#s
tart

Stamen https://www.ssc.education.ed.ac.uk/BSL/biology/stamen.html#start

Stem cell https://www.ssc.education.ed.ac.uk/BSL/biology/stemcell.html#start

Stigma https://www.ssc.education.ed.ac.uk/BSL/biology/stigma.html

Topography https://www.ssc.education.ed.ac.uk/BSL/geography/topography.html#s
tart

Tributary https://www.ssc.education.ed.ac.uk/BSL/geography/tributary.html#star
t

Uranus https://www.ssc.education.ed.ac.uk/BSL/astronomy/uranus.html

U-shaped https://www.ssc.education.ed.ac.uk/BSL/geography/ushapedvalley.html

valley #start

Vena cava https://www.ssc.education.ed.ac.uk/BSL/environment/venacava.html

Ventricles https://www.ssc.education.ed.ac.uk/BSL/environment/ventricles.html

Venus https://www.ssc.education.ed.ac.uk/BSL/astronomy/venus.html

V-shaped https://www.ssc.education.ed.ac.uk/BSL/geography/vshapedvalley.html

valley

Weight http://www.ssc.education.ed.ac.uk/BSL/physics/weight.html#start
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2.The Development of Mathematical Skills of Deaf Learners:
Insights from Research and Examples from Practice:

Olga Pollex, Swetlana Nordheimer, Viktor Werner

Research on the topics of mathematical development and teaching of deaf children
has a long and complex tradition with very diverse theoretical, empirical and school
practical approaches to education of deaf learners (Fleri, 1835; Tabak,
2014, 2016, Marschark & Knoors, 2012; Werner et  al., 2019; Hanel-Faulhaber et
al., 2023). To give an idea of this variety this chapter refers to the theoretical
approaches established and grounded in empirical studies. To modify existing
theoretical approaches by considering new findings in the research and expectations
of professionally prepared teachers of mathematics we seek to refer to more
recent empirical studies focused on mathematical education of deaf schoolchildren.
These studies give evidence for positive effects on teaching mathematics in Sign
Languages. Closing our considerations by concrete examples from deaf mathematical
classroom we would like to challenge experts from research and practice with new
ideas and open questions. We aim to be critical in theoretical research and concrete
in our suggestions for school practice, which, according to Becker (2019, p. 85), is
sometimes ahead of educational policies.

We, the authors of the paper, come from different theoretical traditions and use
different research methods in our scientific work. This article should therefore be
understood as a multi-perspective dialog. Educational researchers, teachers, parents
and other stakeholders are invited to take part in it.

Readers who have a basic knowledge of Deaf Studies and pedagogy of Sign
Languages but are not familiar with didactics of mathematics will be hopefully pleased
to gain some insights into trends in mathematics education. Those who are already
familiar with works at the intersection of Sign Languages pedagogy and the didactics
of mathematics can take the opportunity to expand their knowledge and evaluate
presented research findings and innovative teaching methods. The handbook is an
invitation to explore a complex set of phenomena for which there is no single
theoretical explanation. However, there are some exciting theoretical, empirical and
practical approaches to investigation into learning of mathematics in Sign Languages.
Our paper aims to show how seemingly different research perspectives can
complement each other and that progress towards a comprehensive account of deaf
children's mathematical abilities and appropriate fostering of potentials requires a
broad understanding of research from more than one perspective and discipline. The
main focus of the paper is to provide arguments for mathematics education in Sign
Languages and to give some ideas how it could be done.
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In line with the diversity of positions, theoretical backgrounds and practical intentions
in mathematical education of deaf schoolchildren, the terms “deaf” or “hard of
hearing” are not used consistently in the scientific literature (see Sz(ics, 2019, p. 3).
This makes it difficult to interpret and reflect on the results. To avoid
misunderstandings, we will use the term “deaf” as in Scott et al. (2023, p. 3) “to refer
to a range of hearing levels, from what might typically be referred to as hard-of-
hearing, to profoundly deaf; we also include anyone who would benefit from being
identified as deaf such as those with central auditory processing disorder, as we
believe that all would benefit from the model proposed here.” However, the focus of
this paper is on deaf learners whose main mode of communication is one or more Sign
Languages.

We will start with theoretical framework for learning of mathematics in sign languages
and move on to the empirical studies focused on the effects of Sign Languages on
learning of deaf schoolchildren. We then present selected intervention studies (Nunes
& Moreno 1998, 2002, Nunes 2004, Wille 2018, 2019, 2020, Angeloni & Wille 2022)
and practical examples as a source for arguments for signed mathematics on the one
hand, and as a source for inspiration for development of didactical concepts and
materials on the other hand. Finally, we will introduce the following chapters of the
handbook, which deal specifically with the theory and practice of teaching algebra,
stochastics and geometry with deaf children. We make no claim to completeness of
our work and look forward to constructive criticism of our readers, but we are sure
that we address important aspects of learning of and learning in Sign Languages in
mathematics lessons. Our investigations can be deepened by the readers through
recommended scientific literature or direct contact with the teachers and researchers
we mentioned here and last but not least with us.

Theoretical Framework

Looking at the contributions to the conference of the “Gesellschaft
fir Didaktik der Mathematik” in Englisch “Society for Didactics of
Mathematics” (GDM) in Germany since 2010, we can see that interest in Sign
Languages is growing in the German-speaking mathematics didactics community.
While no articles on teaching mathematics in sign languages were published in the
years between 2010 and 2015, seven were published in the years 2016 to 2021 and
seven in the last three years 2022 to 2024. On the other hand, the number of articles
relating to the subject of mathematics in the journal DAS
ZEICHEN, German Journal for Language and Culture of the Deaf, has also increased,
particularly in recent years. In 2022, for example, there were three articles on the topic
centered on the sign languages in mathematic lessons.
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The positive effects of Sign Languages on the learning of mathematics and
mathematical development of deaf learners have been acknowledged in the history
of Deaf education andintensively studied for example by Rosanova (1978)
and Yashkova (1988). They dealt with the influence of languages on the organization
of knowledge in memory and mathematical problem-solving process in deaf learners.

Sign languages and organization of knowledge in memory and problem solving

In the studies of Rosanova (1971, 1978) and Yashkova (1988) it was empirically proven
that deaf children are multilingual and that different language systems are linked in
their thinking in a complex way. Rosanova (1971) showed that deaf learners grouped
gestures and signs into semantic fields much more easily than words and were thus
better able to retain them. The number of grouped gestures, signs and words
increased over the course of schooling. At the same time, deaf learners became better
at grouping not only gestures and signs but also words as they got older. With the age
of the learners, the precision with which the learners assigned the signs and words to
each other according to their meaning also increased. This means that the memory
content of deaf people is organized differently from that of hearing people due to their
multilingualism. Recent studies conducted by Villwock et. al. (2021) give
differentiated, deep and empirically grounded insights into complexity of activation of
different languages by hearing and deaf ASL-English bilinguals when they process
written words. These results are not obtained with specifical mathematical terms, but
they are still relevant for mathematical teaching of deaf learners especially when it
comes to the so-called text-problems or word-problems. They also give evidence for
the actuality and relevance of the didactical assumptions of empirically described
multilingualism made by Rosanova (1971).

Model of thinking development inspired by Rosanova (1978) and Yashkova (1988)

The studies by Rosanova (1978, 1991) showed that development of language
competences is a very important factor in the mathematical
development. However, Rosanova’s data showed empirically that language
competences alone are not decisive for the successful development of mathematical
abilities in deaf school children. To understand the theory behind empirical studies we
will now refer to theoretical approaches developed by Rosanova (1978)
and Yashkova (1988) and explain the difference between so called visual-
imaginative and logical-verbal thinking as these terms are used by Rosanova (1978).

Visual-imaginative thinking is the ability to think in images and representations that
replace real objects in order to carry out mental operations. Here not only the external
appearance, but also the properties of objects and relationships between them should
be taken into account. To this end, Rosanova (1978) recommends strengthening the
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relationships between objects and words that denote these objects, their properties
and relationships. We go further and suggest that the development of visual-
imaginative thinking can be mediated, guided, supported and strengthened by the use
of productive and conventionalized signs and gestures as designations of
mathematical objects, mathematical objects themselves, their properties and
relationships between them, which can be confirmed by empirical data obtained by
Rosanova (1971, 1978) and Yashkova (1988). Following Rosanova (1978), the term
“visual-imaginative” is used here to emphasize that it is not only about the sensorial
perception and operation with visible objects and images, but also about the mental
imagination, the imagining of objects, their properties, structures and operations with
them and the detachment from the visibly perceptible objects and models to operate
with mental and not necessary perceivable (for example visible or tangible) with
physical eyes or hands images.

Logical-verbal thinking involves formal mental operations mediated through language
that may be completely detached from real objects. Here, too, we go further than
Rosanova (1978) and suggest that this form of thinking should also be consciously
embedded in Sign Languages as early as possible in order to provide optimal teaching
and support. At the same time with conventionalized symbolical signs presented
objects and mental operations can be accompanied by written language and, if desired
and required, by spoken languages. The decisive factor here is that the individual
sensorial abilities to perceive symbols, individual linguistic repertoires and current
stage of mathematical development with regard to visual-imaginative and verbal-
logical thinking of learners are specifically taken into account.

Culturally established national Sign Languages are not the only forms of
communication observed between parents and their deaf children. Morford (1996)
investigated Home Sign as a variant of signing which is often used in families where
hearing parents have deaf children. Normally the signs in this language do not extend
beyond the family and are initially mostly pictorial or natural signs. When all family
members learn these signs, the pictorial component of sign communication is
reduced, as the pictorial nature of the signs according to Morford (1996) does not
facilitate learning and memorization. In families where the parents do not speak the
official Sign Languages of their country, the Home Sign as symbolic language
plays a very important role. According to Morford (1996), when the critical period for
language acquisition has arrived, the child begins to perceive the parents' natural signs
as language information, memorizes them and uses them later to communicate with
them. However, the vocabulary at home is usually limited and cannot be used in
communication outside the family.
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Interdependence between visual-imaginative and verbal-logical thinking

Visual-imaginative thinking as thinking about visually perceivable objects and models
or operating with mental images and logical-verbal thinking as operating with
linguistic and symbolic tools are mutually interdependent in development. Visual
representations and images are not self-explanatory and can only be interpreted in
the context of linguistical or other symbolic explanations or experiences. This means
that preschool children are not only able to interpret visually perceptible pictures in
children's books but can also understand linguistic-logical relationships in stories,
even if they are not presented with visible pictures, but told or signed to them about.
According to Loots et al.(2005), hearing parents who use Sign Language to
communicate with their young deaf children are much more successful in involving
their children in communication with the help of symbolic language than parents who
prefer purely verbal communication (see also Rathmann et al. 2007). Parents who
practice total communication (all possible ways of conveying information with
extensive use of natural signs) come close to those who use signs, but they still lag
behind the group of parents who use sign language in terms of success in exchanging
symbolic language categories with their children (Khokhlova, 2013).

As early as 1965 Vernon (2005) has pointed out the heterogeneity of the group of deaf
children with regard to their cognitive development. He stated that the results of deaf
children in comparison to hearing children depend on the test methods, qualifications
and expertise of professionals who are responsible for the diagnosis. Rosanova (1978,
1991) and Yashkova (1988) also emphasized that the thinking preferences and abilities
of deaf children vary greatly from individual to individual. Rosanova’s results showed
that even in the non-verbal tests, the deaf children whose visual-imaginative and
logical-verbal thinking were harmoniously developed performed better. This must be
taken into account in the classroom. In addition to fostering language abilities and
skills in the context of mathematical problem solving, Rosanova (1971, 1978, 1991)
recommended targeted support for visual-imaginative thinking or the ability to
visualize mathematical content.

Yashkova (1988), who had also empirically studied the development of mathematical
thinking in deaf children, described a model for the development of mathematical
learning in deaf children, in which visual-imaginative and verbal-logical thinking were
seen as integral parts of the developmental process. Yashkova's (1988) concept had
taken gestures and signing into account, but the focus of her research was on the
fostering of spoken language. Since gestures and signs were not excluded from the
study, Yashkova's (1988) model can be modified for teaching mathematics in Sign
Languages and can become a structuring element on the one hand and the subject of
future didactic research on the other.
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According to Yashkova's model (1988), even in the early stages of development and
when solving mathematical problems by operating with objects, the success of
mathematical development depends on the extent to which children's practical
activities are embedded in language. Language also plays a special role in the
transition from operating with models to visual-imaginative thinking which leans not
on models but on their visual or mental representations. It helps learners to detach
themselves from concrete objects and to use their pictorial and schematic
representations of objects, conveyed by signs and gestures, as a basis for reasoning.
At first, the deaf learners can solve difficult problems with the help of practical actions
and, if necessary, with the help of adult signers, then, with increasing experience,
learners develop rational solutions and can express them in Sign Languages in their
own independent way. Later on, mathematical arguments can already be found in the
form of visual representations of objects, on the basis of pictures with actions and
described with the help of productive signs as well as mathematical conventionalized
signs.

An important prerequisite for the development of visual-imaginative thinking is the
development of the ability to differentiate between plans of real objects and models
that reflect these objects. To this end, the generalization and schematization of
pictorial representations can first be practiced through Sign Languages, then the
transitions to the next stages of generalization of images and more complex schemata.
Sign languages allow the detachment from concrete objects and their pictorial
representations by enabling the operation with mental images. The models of
Rosanova (1978) and Yashkova (1988) are based on their extensive experimental
studies, in which quantitative and qualitative research methods were combined. But
what can we learn from more recent empirical studies which focus on the use of Sign
Languages in mathematical teaching?

Empirical Findings

To investigate new knowledge about processing of Sign Languages and signed
numbers in the brain of Sign Language users, psycholinguistic methods and
neuroscience are used in more recent studies.

Neurological findings on language processing

Neville et al. (1998) used functional magnetic resonance imaging (fMRI) to show which
areas of the brain were activated during the processing of written English or American
Sign Language (ASL) in deaf signers, hearing signers and hearing non-signers. It was
found that sign languages were processed differently from written language. All
groups, hearing and deaf participants, with English or ASL as their preferred
communication modality, showed strong and repetitive activation in the left

33



STEMSiL

hemisphere and thus in the brain areas commonly associated with language
processing. In addition, hearing and deaf participants who were Sign Language
oriented showed extensive activation in the right hemisphere, suggesting that the
specific demands of language also partly determine the organization of language
systems in the brain. Masataka et. al (2006) focused on the processing of signed
numbers by deaf sign language-oriented individuals and proposed that “In all, the
network exists on a non-linguistic basis and functions for the retrieval of arithmetic
facts from presented linguistic material regardless of the mode of the language, that
is, a region of parietal cortex underlies an abstract-semantic number sense, and a
region of left prefrontal cortex underlies more specific operations mediating exact or
approximate calculation. Particularly, the fact that linguistic representations of exact
numerical values are controlled in the brain's left hemisphere even in native signers
should be intriguing.” However, we still know too little about the functions of the brain
to directly derive from these concrete didactic consequences for the planning of
teaching processes (Becker, 2006). For this reason, in the next step we will turn to
more recent findings from the developmental psychology of deaf children.

Importance of early language support for mathematical development

Khokhlova (2013) and Bogdanova (2021) summarized recent studies on the role of
Sign Languages in the communicative, cognitive and social development of deaf and
hard of hearing children. They found that a number of studies have shown that deaf
children of deaf parents are not inferior to hearing children in terms of their cognitive
abilities and that the mastery of Sign Language positively influences the cognitive
development of deaf children. Sign Languages promote creativity in deaf children, lead
to a better understanding of spatial relationships and to greater flexibility in problem
solving.

Many researchers recognize the need for early acquisition of sign language by deaf
children. Sign languages can serve as a linguistically symbolic means of
communication, which is crucial of the first stages of children’s development
and contribute to the development of the cognitive and personal domain by creating
the conditions for emotional well-being. Based on the studies, Bogdanova (2021)
points out the challenges of diagnostics in sign languages. This is exactly where the
work of Werner and Hanel-Faulhaber (2023) comes in. They are developing tests
which are appropriate for deaf children.

Werner and Hanel-Faulhaber (2023) investigated the understanding of repeating
patterns in deaf and hearing children. The children had to fill in agap in the patterns. It
was found that the solution scores of deaf children who learned Sign Languages at an
early age are comparable to those of hearing children. In contrast, deaf children who
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learned Sign Languages later are less successful. This shows that Sign Language has a
positive effect on solving pattern tasks. Earlier studies by Werner (2010) and Werner
et al. (2019) also indicate that Sign Language support has a positive effect on the
mathematical development of younger deaf children.

Santos and Cordes (2022) showed in their studies that deaf children who are not
exposed to fluent language from birth generally lag behind their hearing peers in
mathematics. These inequalities occur as early as the age of 3 and can persist into
adulthood (Kramer & Grote, 2009). The empirical data obtained by Santos and
Cordes (2022) suggest that limited access to language, especially in the first months of
life, may create a risk to the acquisition of early number concepts and mathematical
problem-solving skills. The study focuses on the role of the working memory of deaf
children in mathematical learning. These results are consistent with the findings of
Walker et al. (2024) who, in a study with 188 children aged 4.5 to 9 years, discovered
the relationship between language experiences and children's ability to match number
signs or number words to Arabic numeral symbols and cardinal numbers. The results
suggest that early access to language, whether spoken or signed, supports the
development of age-typical mapping skills and that knowledge of number words is
crucial for this development.

An evaluation of a version of the mathematical diagnostic test MBK O (test of basic
mathematical skills at kindergarten age; Krajewski, 2018) in German Sign Language
(DGS) found that the results of six-year-old deaf native signers correspond to the
(hearing) age norm (Werner & Hanel-Faulhaber, 2024).

Sensory experiences through the use of hands when counting

The potential of sign language-based mathematical support also arises from the fact
that the use of sigh numbers and sign algorithms allows new sensory experiences. For
example, Di Luca and Pesenti (2011) have shown that the representation of numbers
as finger-configurations offers children the opportunity to learn and internalize basic
properties of natural numbers through sensorimotor interactions with the world.
Recent findings show that adults also use their fingers as a visuomotor support to
process, represent and communicate numbers, regardless of their hearing status and
educational background. It has been shown that the use of fingers to prototypically
represent numbers gives the corresponding finger configurations a special status in
long-term memory: these configurations are recognized and processed faster than
other finger configurations and provide direct access to number size, which other
finger configurations do less efficiently.

Di Luca and Pesenti (2011) argue that finger-numbers help to acquire, build and then
access number semantics, and that they provide additional value compared to other
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number representations by anchoring the meaning of numbers in a culturally shared
but non-arbitrary and self-experienced sensory-motor representation.

At this point, however, it is important to note that finger counting as described
by Di Luca and Presenti (2011) is fundamentally different from the counting systems
that are integrated into different national Sign Languages as a part of mathematical
cultural heritage (Fleri 1835, Raino et. al., 2018). Similar to finger counting, signed
numbers allow sensory experiences and support short- and long-term memory. But in
contrast to finger counting, they represent complex mathematical symbols and
algorithms (Rainodet. al. 2018, Werner & Hanel-Faulhaber, 2024).

Importance of counting and calculation algorithms in sign languages

Leybaert and van Cutsem (2002) investigated to what extent the visual-manual
modality and the structure of the sign number sequence has an influence on the
development of counting and its use by deaf children. For example, the number
sequence in Belgian French Sign Language follows a base-5 rule, while the number
sequence in oral French follows a base-10 rule. To illustrate this special characteristic
of Sign Languages, we would like to draw your attention to the project
“Nina im Zahlenland” (Nina in Numberland): https://ksl-msi-nrw.de/de/node/5134 ,
which was created by the team at TU Dortmund University (Math inclusive with PIKAS)
and the University of Hamburg (MaBaKo-Deaf) with scientific support from Viktor
Werner. The sighed numbers from 1 to 100 can be found there.

The numbers 11 to 20 in particular differ in various dialects of German Sign Language.
While the NRW (Nordrhein-Westfalen) variants are used in the “Nina im Zahlenland”
project, numbers are signed differently in Berlin. The representation of numbers in
German Sign Language and dialectal differences are discussed in more detail in
Papaspyrou et. al (2008). Numbers are also signed differently in different national Sign
Languages, whereby base 5 is retained. For example, Ukrainian Sign Language (UGS)
also works with base 5. However, base 5 is represented differently in UGS than in
DGS (German Sign Language), (see Figure 1).
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Figure 1: Examples for numbers in German and Ukrainian Sign Languages (Copy right: Maike Beyer)

These examples already indicate the symbolic nature of the signed numbers and the
complexity of the differences which can affect school children’s understanding by
transitioning between languages. While in the signed number “six” the number of
fingers corresponds to the cardinality of the number, in the Ukrainian variant of the
signed number “eleven” the five fingers of the left hand and the four fingers of the
right hand of the person signing represent the ten. In Berlin’s version 11 is represented
with the help of movements (see Figure 10) as you can see later exemplified by Olga
Pollex (Frau TAUBe). However, the creation of signed numbers, hand configurations
and movements are not arbitrary, but follows not only linguistical constraints but also
systematical and logical mathematical rules (cf. Werner et al., 2019).

Leybaert and Van Cutsem (2002) examined the accuracy and use of the number
sequences in hearing children aged 3 years and 4 months to 5 years and 8 months and
in deaf children aged 4 years and 6 years and 2 months. Three tasks were used:
abstract counting, counting objects and forming sets with a specific cardinality. Deaf
children showed age-related delays in their knowledge of the number sequence. The
deaf children's errors were not arbitrary and could be attributed to the rules of sign
language. They found that deaf children made more errors when they counted up
to number 6. This is the first time where the additive rule applies in Belgian Sign
Language. Remarkably, their performance in counting objects and forming quantities
of a certain cardinality was similar to that of hearing children, although hearing
children had a longer number sequence. This suggests that deaf children are better at
counting and number representations than their knowledge of the number sequence
would suggest.
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In a comparative study on counting skills in German Sign Language (DGS) and German
of six-year-old deaf DGS signing and hearing German speaking children, it was shown
that the use of number signs has a particular influence on the naming of successor
numbers. The larger the number whose successor is to be named, the more
consistently deaf children performed. In hearing children, on the other hand, the
solution rates with German number words decrease. The special number sign
structure in DGS can therefore support the development of counting skills (Werner
& Hanel-Faulhaber, 2024).

In an earlier study, Nunes and Moreno (1998) investigated the use of calculation
algorithms in British Sign Language (BSL) by deaf children. The errors observed in this
study by deaf children were systematic errors and not random, incorrect counts. The
deaf children's errors could be directly linked to the structure of the counting system
and the algorithm used, just as the errors in written arithmetic were linked to the
understanding of place value and the mechanics of the written algorithm. These
results illustrate the effects of a sign system on mathematical reasoning. They show
how sign numbers influence the arithmetic process of deaf children (Nunes & Moreno,
1998). Signed algorithms are complex mathematical phenomena. To understand the
dimensions of the complexity of signed algorithms, we recommend the work on signed
algorithms in Finnish Sign Language by Raino et. al. (2018).

To summarize our report on recent findings we would like to note that the positive
effect of Sign Languages on learning mathematics by deaf chidren has been empirically
proven. Sign Languages support short- and long-term memory by allowing additional
sensory (kinematic) experiences of numbers, number spaces and algorithms. Signed
algorithms also provide an additional symbolic tool for solving mathematical problems
and are relevant in the context of cultural affiliation to national Sign Language
communities. They are complex phenomena that pose a challenge for interpreting
(cf. Raino et. al., 2018). Their importance for the successful learning of mathematics is
difficult to overestimate.

In addition to targeted language support in the context of mathematical teaching, it is
important to specifically promote the visual-imaginative thinking of deaf children.
Following Rosanova (1978) and Yashkova (1988), we use this term to describe the
ability to interpret mathematical visualizations or models and to mediate them
supported by languages, to use them to solve mathematical problems and to develop
them independently using signs. In contrast to Rosanova (1978) and Yashkova (1988),
we want to place a stronger focus on sign languages.

38



STEMSiL

Selected Intervention Studies

In the following, we will present some examples of selected intervention studies with
deaf children. Here, too, we make no claim to completeness, but use presented
studies to mark the need for development of concepts and materials for mathematical
teaching which implement sign languages. These are primarily the intervention study
by Nunes and Moreno (2002), its further development by Wille (2018, 2019) and the
intervention study by Angeloni and Wille (2022).

Nunes and Moreno (2002) developed an intervention program to promote the
numeracy skills of deaf children. They compared 23 deaf learners who participated in
the project with a baseline group consisting of 65 deaf learners who had attended the
same schools in the previous year. The participating learners were tested before and
after the intervention with the Nelson Age-Appropriate Mathematics Achievement
Test. The intervention was delivered by teachers during the time normally allocated
for mathematics lessons. The learners who took part in the intervention study by
Nunes and Moreno (2002) did not differ from the control group in the pre-test
but performed significantly better in the post-test. Nunes and Moreno (2002) came to
the conclusion that the intervention program effectively promoted the performance
of deaf learners in arithmetic. Nunes (2004) assumes that deaf children's strengths lie
in the processing of spatial-visual information. Based on this assumption, she proposes
teaching materials for four basic arithmetic operations that contain graphic
representations and questions in written English.

One of the strengths of the intervention study by Nunes and Moreno (2002) is the fact
that the tasks, diagrams and task texts are made available to the teachers. However,
sign language representations of numbers or other technical signs are not integrated
into the worksheets presented. In this sense, the studies by Wille (2018, 2019) based
on Nunes and Moreno (2002) have particular theoretical and practical relevance for
sign language mathematics lessons. In these studies, the concept of Nunes (2004) was
further developed and sign language explanations were specifically taken into account
and documented as videos. The studies were tested in the context of specific learning
groups at an Austrian school in which deaf learners were included. The development
work was theoretically located in the context of semiotics and taking into account the
work of Kutscher (2010). The materials developed can be found
here: http://www.annikawille.de/mathe_in_oegs/mathe_in_oegs.html

In a study by Angeloni and Wille (2022), multi-modal learning environments with
videos, worksheets and comics on the Pythagorean Theorem were developed in
cooperation with Christian Hausch and tested in a group of deaf learners
(Angeloni & Wille, 2022). The materials can be used in bimodal bilingual lessons and
contain both sign language and written language explanations and mathematical
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problems. One of the most important results of the work was the finding that the
materials offered in Austrian Sign Language were better accepted and processed by
the participants than materials in written German. At the same time,
Angeloni and Wille (2022) note a very high workload in the development of teaching
materials that include Sign Languages. A particular strength of the study is the
openness to learners' signed explanations and variations. For example, in one task,
learners are encouraged to complete the parts of the proof of the Pythagorean
theorem presented as a sequence of pictures using sign language or written language
and to record them on video (see Figure 2). Here we can see an example of how the
theoretical proposals of Rosanova (1978) and Yashkova (1988) can be used
didactically and methodically in the classroom using modern media. It is worth
emphasizing that in the study not only one, but several proofs of a sentence were
thematized.
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GRUPPENARBEIT ZU
Klasse: armn
SATZ DES PYTHAGORAS

Beweis 1: Der Beweis eines Philosophen

Es gibt mehr als 400 verschiedene Beweise vom Satz des Pythagoras. Hier lernen wir
den Bewels von Arthur Schopenhaner. Er wurde 1788 in Danzig geboren und starb
1860 in Frankfurt am Main. Arthur Schopenhaver war ein Philesoph. Er versuchte, die
Genmetrie mithilfe der Philosophie verstandlich zu machen. Er meinta: Baweisa fallan
wie _,vom Himmel®.!

Satz des Pythagoras

Gegeben sind ein rechtwinkliges Dreteck, die Quadrate an den Katheten und
dazs Cadrat an der Hypotenuse.

Aussage: Die Summe der Flacheninhalte der Quadrate an
den Katheten st gleich dem Flicheninhalt des Quadrats an

der Hypotenuse.

Aufgabe 1. In den untenstehenden Abbildungen wurden das rechtwinklige Dreteck und die Quadrate
nach der Idee von Schopenhauer zerlegt. Schreibe @u jeder Abbildung einen (kursen) Text oder nimm
ein 00G5-Video auf! In diesem Text oder 9GS-Video erklirst du, was Schopenhaner gemacht hat.

| 2 1 —

Figure 2: Series of pictures on the Pythagorean theorem (Angeloni & Wille 2022)

One of the interesting results of the study was the observation of the
difficulties deaf learners had when using geometric terms. For example, they were
unable to recognize the right angle in the sign when its position was changed, and the
vertices of the angle were no longer parallel or perpendicular to the ground. In Olga
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Pollex's suggestions, we will see how these difficulties could be dealt with in the
classroom or how they could be prevented by making greater use of enactive teaching
aids and productive mathematical signs, which Angeloni and Wille (2022) refer to as
classifiers.

(5}‘} q ()

P/_Ll.‘ N : /"’{ ,)\\

// v ‘. .
/ ; Lb} ; \ (’/ e ‘\“»\
SR

‘)
Quadrat 2wu ,J‘ Wnkel ¢

|
A

Figure 3: Vocabulary used in the intervention study by Angeloni & Wille 2022

One of the important results of the study is the decision to focus more on Sign
Languages in future studies and to largely dispense with the written language
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dimension. The documented feedback and learning progress of learners in the works
by Wille (2018, 2019) and Angeloni and Wille (2022) show examples of how Sign
Language teaching materials can be used in bimodal bilingual lessons. However, they
also show that there is a need for more teaching materials and concepts that
specifically take Sign Languages into account and link them with other teaching media.
In the next step, we will give some examples of teaching materials that have been
developed for deaf children and then turn to some innovative methods and teaching
materials.

Examples from Practice and Innovative Teaching Methods

Before we bring current and innovative examples from the practice of teaching
mathematics, we will first turn to history and present examples from the teaching
methodology of Fleri (1835) as well as excerpts from the documents in which tasks
and methods are presented that were already used in the teaching of geometry in Sign
Languages in the 19th century (Tabak 2014). We will then look at current textbooks
for deaf children and then present examples from the lessons of Olga Pollex, head of
the specialist seminar for “Hearing and Communication” and teacher of mathematics.

Lessons from history

The idea of using signs and Sign Language teaching materials in the classroom has a
long tradition. Fleri (1835), for example, gave a didactic and methodical introduction
to sign numbers and described some important mathematical signs in one of the first
sign lexicons. Signed mathematics is first introduced with beans or sticks, then with
the help of line drawings. It is interesting to note that the sticks are structured in such
a way that the base 5 can be quickly grasped visually. Fleri (1835) based his
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considerations on his observations of arithmetic algorithms
among themselves (see Figure 4).

that deaf people use

2 i 6
" 111 7
]
" mum 8
" mn 9
55 i
1nn ""-'mu 10

Figure 4: Introduction of numbers from 1 to 10 (source: Fleri 1835)

Tabak (2014) looked at the mathematical terminology used to teach mathematics
in Gallaudet University or its predecessor institution Columbia. He has found old
documents describing examination tasks and teaching methods used for geometry,
which state: “[Geometric] demonstrations are occasionally made in writing, but the
usual course is for the student to draw a diagram, and to give the proof by means of
signs and the manual alphabet, pointing out each angle [and] line...as it is needed in
the argument” (Nineteenth Annual Report of the Columbia Institution, 1876, p. 5-6).
This method of teaching clearly required that both faculty instructors and students
develop a “mathematical extension” of American Sign Language (ASL) sufficient to

express Euclidean geometry (see Figure 5).
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11.—Mathematics.

Geometry.—The Freshman Class, in its first two terms, is taken through
the first eight books of Loomis’s Geometry. Demonstratious are occa-
sionally made in writing, but the .usual course is for the student to
draw a diagram, and to give the proof by means of signs and the man-
ual alphabet, pointing out each angle, line, &e., as it is needed in the
argument.  Several weeks are devoted to the demonstration of theorems
not demonstrated in the text-book. In the examination upon the first
six books, only the numbers of the book and of the proposition are
given to the stndent; in the remaining books, the theorems are given.

Geometry is completed in the third term of the Freshman year. The
spherical black-board is used in the discussion of spherical triangles.

Algebra is resnmied, aud the subjects of ratio and proportion, pro-
gressious, permutations, the binowmial theorein, series, and the general
theory of equations are studied. The recitations are chietly written,

and the stndents elucidate their work by means of the sigu-language
and manual English. ' o

Conic Scctions are studied in the first term of the Sophomore year.
Sixty-five propositions are demonstrated, niumerical exercises are solved
and a few theorems are assigned for original work. ’
B Plane Trigonometry and Logarithms are studied in the second term.
I'he text-book is well supplied with exercises, which are used to test
the knowledge and comprehension of the class.

Spherical Trigonometry is studied in the third term. The method iy
the same as in plane trigonometry. In some classes the work has been
abridged, and the time devoted to Mensuration aud sSurveying.

Mechanics.— Al the elementary propositions of mwechanics are mathe-
matically demonstrated, and illustrated by numerous practical exam-
ples.  The Juniors study mechanies for one term.

The principles of mechunics as applied to astronomy are studied by
gn} Juniors in the third term, as noted uuder the head of Natural

cience.

Figure 5: Undergraduate courses of mathematics at Columbia Institution (1876)

Given this description of how geometry was learned and the test questions found in
the older documents, it is possible that mathematical ASL, at least with respect to
Euclidean geometry, was as well developed in 1876 as it is today, perhaps even better.

Unfortunately, we don*t have information how the concrete technical signs were
documented at Columbia Institution. We only could find the written tasks and can see
what mathematical content was embedded in Sign Language at that time. Tabak
(2014) gives some examples of exam questions. Here are two examples from
geometry:
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e “Construct a plane triangle, having [been] given the perimeter of the
angles of the triangle.” (p. 32)

® Conic Sections: “Prove that perpendiculars drawn from the foci upon
a tangent to the ellipse meet the tangent in the circumference of a
circle whose diameter is the major axis.” (p. 32)

Examples of special textbooks

On the basis of empirical studies and interventions, a series of methodical handbooks
and special mathematics textbooks for deaf preschool and primary school children
have been and are being developed and tested in Russia and Georgia, for example.
Sign language representations of numbers were included in the textbooks (see for
example Suchova 2002). They are presented alongside numbers in Arabic notation
and in pictures. For example, there is a picture of ten frogs. The frogs are grouped in
such a way that the children can recognize patterns (3+3+3 or 3x3) and 9 as a number
they already know. Another frog which is placed outside of the group of nine increases
the number up to 10. This gives preschool children the opportunity to get to know the
number 10 in the context of visual patterns, as successor of the number nine and as
signed number ten which is known at least to those of them whose parents are signing.
The signed presentation is at the beginning of introduction to number ten. In the
following, the children are offered the tasks in pictures or sequences of pictures. The
tasks are deliberately chosen so that the correct result is not always 10. This means
that the children have to think, count, calculate and use visuals to solve the problems
by themselves. The pictures are linked to contexts that the children may be familiar
with from their everyday lives.

Newer Russian textbooks like “Mathematics 2” (2023) or those which are aimed at
older deaf children, contain pictorial-schematic representations of text problems as
well as adapted simplified texts in Russian. Similar textbooks for deaf children were
developed for deaf children in Berlin in the 1970s and tested in special schools for deaf
learners.

As there is a lack of materials with explanations in Sign Languages, which are
connected to visual aids and mathematical representations, teachers are developing
materials and methods that can fill these gaps to meet the needs of their
heterogeneous learning groups of deaf school children. We have thus arrived at a
point in the didactics of mathematics where school practice is ahead of didactical
research, and therefore we are turning not only to scientific literature but pose our
questions to Olga Pollex, whose professional expertise and experience lies in the
intersection of didactics of sign languages and mathematics.
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Olga Pollex is an experienced teacher trained in mathematics and special education
and is also the head of a seminar for young teachers for the deaf. In the following, we
guote written statements from correspondence and conversations with Olga Pollex.
In the context of ethnographic research methodology, we decided to present original
excerpts from Olga Pollex's arguments and recommendationsfor teaching. These are
enriched with concrete teaching examples which are intended to serve as a source of
inspiration for teachers in practice and a treasure trove of ideas for Design Based
Research in mathematical education of the deaf learners.

Innovative teaching methods using selected examples

As a specialist with theoretical and practical knowledge, Olga Pollex is firmly convinced
that “wordless”, “language-free” and even “language-poor” teaching materials are not
sufficient to teach deaf children in mathematics in the long term:

“To understand and explain processes in math, you need language. | often find that
language is underestimated and omitted in mathematics lessons. School children
are then able to understand certain task formats through frequent practice, but they
are unable to understand the processes behind them. For this reason, there are often
problems with understanding and explaining their own calculation methods and
algorithms.

The solutions are often developed by copying the calculation methods without
understanding why this is done in a certain way. Mathematical tasks which foster
problem-solving, transferring one's own knowledge and transfer tasks are important
parts of math lessons. | often observe that math lessons for deaf children focus more
on mechanical arithmetic, where aspects of the mathematical language are
underestimated.

The Sign Language skills of teachers and learners certainly play a role here. In order to
avoid Sign Language, mathematics lessons are often focused on automating skills
(reproducing exercises). Language is needed to recognize mathematical structures,
relationships, to link knowledge and skills and to transfer these to unfamiliar problems.

To illustrate her thoughts on the topic of Sign Languages in mathematics lessons, Olga
Pollex applies the model used in school-oriented STEM-project called SINUS. By doing
this she analyses challenges teachers and school children have when it comes to the
use of German Sign Language (DGS) in mathematical lessons.

In the Figure 6 we will summarize the levels of used language translated into English.
It is important to note that the levels are interlinked and interrelated.
Positive developments at one level can lead to progress at other levels. Conversely,
difficulties and developmental delays at basis level like the “everyday language”, for
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example, can affect the development at other levels and mathematical development
in general.

Mathematical symbolic %
Mathematical terminology fractions
“Mediating” language of
) g ) guag part of the whole
instruction
Everyday language slice of pizza

Figure 6: The levels of used language (Retrieved from:
https://www.schulentwicklung.nrw.de/sinus/upload/Publikationen/Ma5-10_38_ Heft_04-05.pdf)

The difficulties that we teachers of deaf sign language-oriented children encounter in
the classroom are based on the sign language skills of the teachers and the learners. |
would now like to discuss this separately.

The language competence of the learners:

Deaf learners with language deprivation, who had no possibility to learn Sign
Languages at home already have difficulty with “everyday language” in Sign Language
when they come to school. When they come to school, language work generally has to
be done. “Mediating” language of mathematical instruction is a level which can
be too high for these children.

However, deaf learners who have appropriate Sign Language skills according to their
age from home are capable of everyday Sign Languages. | could very often experience
that “mediating” language of mathematical instruction in German Sign Language is
accessible for them.

The language skills of the teachers:

It is of course a challenge for many teachers to teach the subject of mathematics in
Sign Languages. If there are sign-language-oriented children in the group, | think it is
important that it is taught in German Sign Language and that not only spoken
language, which is supported by single signs, is used. It is also important that many
productive signs and the signing space are used in the subject like mathematics.
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Suggestions for promoting and compensating for sign language skills in Mathematics
lessons

My suggestion for teachers and also for the learners is, on the one hand, greater
consideration and interconnection of the enactive, iconic and symbolic levels
(according to Bruner) and increased use of productive signing, which is directly linked
to enactive actions and iconic representations.

Teachers often ask me about technical terms. These signs are very important.
However, if we look at the model in Figure 6, mathematical terminology comes in on
the third level after everyday language and “mediated” language of instruction.

the edge the side the square(lll)  thesquare (Il

the corner the corner the square (I)

das Quadrat (I1)

die Kante die Seite das Quadrat (1N

Figure 7: Sides, edges, squares and corners for 2-D and 3-D figures (Copy right: Frau TAUBe)

To enable access to mathematics, increased use of productive gestures and the gesture
space is important. Only then could special signs as signed mathematical terminology
be introduced and then represented using the symbolic language of mathematics.
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| often observe that teaching is done in German Sign Language, but in a linear way.
This means that signs are simply strung together without using the space and
productive signs. We should try to get away from arranging the signs in a one-
dimensional sequence and really work more spatially with signs. It brings many
advantages in math lessons. The use of space is not easy to represent on 2D
worksheets, but | try to transfer the multidimensional and dynamical structures of the
signs to design of the worksheets. Here is an example of productive signs (Figure 7).

For specialist signs, such as the sign that corresponds to the mathematical term
“square”, it is important to show several variants and to be open for variations of the
sign the learner can suggest. After different signs are introduced and discussed in the
classroom the learners and teachers can decide together which sign should be used as
a fixed variant in the particular classroom (Figure 7).

It can also be helpful to give all
the central terms together at
the same time so that the
learners can see similarities
and differences at a glance.
The example in the illustration
on the left is about different
geometric surfaces and the
number of their sides and
corners. In this way, the terms
o e comens sdes  comers sides are not only embedded in
I e the square context, but also in a small
exercise. The terms can thus be
immediately incorporated into
the triangle the circle the linguistic repertoire of the
teachers and the learners.

the rectangle

What is also special about this
worksheet? Geometric
visualizations, gestures and
words are linked directly in the
learner's field of vision, which is
in line with the theory of
Rosanova (1978)
and Yashkova (1988) and our
extension of their model.
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Figure 8: Corners and sides for 2-D and 3-D figures

Pythagoras Theorem: Example for use of productive signs

To illustrate how productive gestures can be used in lessons, | would like to look at an
example from my lessons, namely the introduction of the Pythagorean theorem by
linking actions and gestures. The illustrations from the Sign2MINT database (Barth et.
al., 2022) show technical language descriptions of the theorem, which also illustrate
equality of area in the conventionalized version with the help of the corresponding
hand shapes and execution points.
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Figure 9: Specialized gesture for PYTHAGORAS THEOREM (c) Sign2MINT@Max Planck Foundation

Looking back to my introduction of Pythagoras Theorem | suggest to start with actions
or working on enactive level. | gave my learners the possibility to experience the
equality of the sum of the areas by experimenting with paper figures. That is how they
can figure out with help of concrete examples from paper that the squares of
the cathets and the square of the hypotenuse have the same values in these particular
cases. They could cut and cover the areas using a few examples. The situation
experienced on the enactive level should then be described by the learners in their own
sign language. Through the narrative, which included productive signing, they were
also able to understand the law again and transfer it to other factual tasks that could
be solved with the help of Pythagoras' theorem.
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By introducing the learners to the Pythagoras Theorem through acting and signing,
they were later able to understand technical signs and the proposition of the Theorem
formulated in the technical signs.

It is not only geometry that offers the possibility of linking productive signs with
actions. Here | would like to look at a few more examples / topics to discuss language:

Numbers over 10

It is possible to introduce to sign language and its mathematical symbolics by using
numbers. Up to numbers 10 the signs for numbers are concrete. The number of fingers
in the signed number from 1 to 10 represents the number. The number 11 and bigger
use hand movements as symbolic parts of the signs to represent tens.

elf /*w elf fﬁ'

11 1

B ==== RN _====
SR SRl

Figure 10: Two variants for signed eleven used in Berlin (Copy right: Frau TAUBe)

///

There are dialects in Germany. The Berlin version of the numbers “11” and “12” is
mathematically confusing. The number 11 is tapped with the thumb and index finger
and is often confused with 12. Number 12, where the thumb taps the index and middle
finger. It is therefore confused with 13. And here, as a math teacher, you are faced
with a decision. Do | follow linguistics and show the Berlin signs, as | teach in Berlin?
Or do | better adopt the version where the numbers 11 and 12 are “shaken” just like
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the numbers 13-19? | always show both versions and then always take the “more
complicated” 11 and 12. To school children with language deprivation syndrome or
learning difficulties | show other versions. | often leave it up to the children which
version they can use. | also always tell them that the numbers are signed differently in
Germany and other countries in order to create flexibility.

When dealing with numbers, it is important to me to incorporate aspects of fostering
abilities to communicate in German Sign Language into math lessons. For me it is
important to pay attention to the correct use of parameters when presenting technical
signs and numbers as shown in the example in Figure 11. Correct execution is circled in
green, while incorrect execution of numbers is shown in the red circles.

Figure 11: Lexically right way to sign a 7 in DGS (green) and typical mistakes (red), (Copy right: Frau TAUBe)
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Arithmetic over 10

To give an example for first signed calculation | would like to refer to the interesting
experience with doubling singed algorithms which can help with arithmetic for
beginners. You sign both numbers in the air. Both fives are bundled together to form a
10 and the remaining numbers are added.
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Figure 12: Signed doubling algorithm (Copy right: Frau TAUBe)

However, it becomes difficult, for example, when calculating 9+5. Ten fingers are no
longer enough. So, you have to operate with mental number concepts in your head
without using hands. | have observed that learners who mouthed numbers were able
to fix number names in this way and to continue counting in their heads supported by
mouthing numbers leaning on symbolical aspects of number line. For learners who
were signed without mouthing of number names found it difficult to continue. But
these are just my observations, and | can't say that this is the general rule. In any case,
it's a frequent observation, that is why | also integrate practicing of mouthing of
numbers in German into my lessons.
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Examples from combinatorics

Just to give an idea what could be important by teaching combinatorics | would like to
refer to my experience with teaching lessons in combinatorics called “Permutation,
variation and combination”. The structure of my teaching units is described in the

Figure 13.

Aufbau der Unterrichtseinheit:

Mathematischer Inhalt

Gestaltung der Stunde

1. Stunde

Variation mit Wiederholung

Einfihrung in die Geschichte (Fridolin will den
Kuss)

Aufgabe: Wir knacken das Schloss
Tatigkeit: 2 von 3 Symbolen in einer
bestimmten Reihenfolge im Schloss richtig
einstellen

Wiederholung

2. Variation ohne Wiederholung Aufgabe: Unterschiedliche Legotiirme bauen.
Tatigkeit: Aus 3 Bausteinen mit je einer Farbe
‘ einen Legoturm aus 2 Teilen bauen.
3. Aufgabe: Moglichst viele Eiskombinationen fur
G die Prinzessin anbieten.
Kombination ohne Tatigkeit: 2 Sorten aus 3 Sorten Eiskugeln
Wiederholung wahlen.
Kombination mit Wiederholung | Tatigkeit: 2 unterschiedliche Sorten aus 3
Sorten Eiskugeln wahlen.
4. Permutation ohne Aufgabe: Fir Fridolin die Krone auf moglichst

viele unterschiedliche Arten gestalten.

Tatigkeit: 3 Glitzersteine in bestimmter
Reihenfolge aus 3 Sorten wahlen und auf die
Krone kleben.

Variation ohne Wiederholung

Permutation ohne

Aufgabe: Kleid der Prinzessin mit den Knépfen
moglichst unterschiedlich ausschmiicken.

Zwei Knopfe in einer bestimmten Reihenfolge
aus 3 Sorten wahlen.

Drei Kndpfe in einer bestimmten Reihenfolge

AT

Wiederholung aus 3 Sorten anbringen.
6. Kreuzprodukt Aufgabe: Kleidung fiir Fridolin aus 2 Hosen und
o) 3 Taschen auswahlen.
R e
/&

Zusatzaufgabe auf enaktiver Ebene:
Kombinationen aus Schal und Mitzen
entwickeln

Figure 13: Structure of the teaching unit “Permutation, variation and combination”. (Copy right: Frau TAUBe)
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Structure of the lessons:

Mathematical content

Organization of the lesson

Lesson 1 Variation with repeat

Introduction to History (Fridolin wants the kiss)

Task: We pick the lock

Activity: Set 2 of 3 symbols correctly in a certain
order in the lock

Lesson 2 Variation without repeat

Task: Build different Lego towers

Activity: build a Lego tower made of 2 pieces from
3 building blocks with one colour each

Lesson 3

Combination with repeat

Combination without repeat

Task: Offer as many ice cream combinations as
possible for the princess

Activity: Choose 2 types from 3 types of ice cream
scoops

Activity: Choose 2 different types from 3 types of
ice cream scoops

Lesson 4

Permutation without repeat

Task: design the crown for Fridolin in as many
different ways as possible

Activity: Choose 3 rhinestones in a certain order
from 3 varieties and glue them to the crown

Variation without repeat

Lesson 5

Permutation without repeat

Task: Decorate the princess's dress with the
buttons as differently as possible

Activity: Choose 2 buttons in a specific order from
3 varieties

Activity: Attach 3 buttons in a specific order of 3
varieties

Lesson 6 Cross

Task: Choose clothing for Fridolin from 2 pants
and 3 pockets

Additional task at the enactive level:
Developing combinations of scarf and hats

Figure 13b: Translation of figure 13
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Tasks and problems from combinatorics require linguistic understanding. | was unsure
whether my group of young learners would understand the tasks. Learners with high
abilities in German Sign Language understood very quickly the problems and their fine
variations. To involve learners which have certain difficulties with German Sign
Language | had to demonstrate the meaning of the tasks by actions and derived
productive signs from these actions. | then realized that almost all of the pupils were
able to understand the tasks and problems well and were able to work on them mostly
independently and in group work. At the end, they were always able to explain to me
how they found the combinations which were described in the problems. Figure
14 gives an example of explanation in German Sign Language documented partly on
the work sheets.

Aufpassen: Der Code darf sich wiederholen!

v v

Figure 14: Worsheet: Watch out! The code may be repeated. (Copy right: Frau TAUBe)

As we already have seen in the examples for combinatorics problems which are
formulated as written texts but also signed story problems can be very challenging for
learners with language deprivation. | would like to end with some observations of story
problems formulated as written text or signed.
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Story problems

Talking about story problems, | would like to refer to the seminar conducted by Viktor
Werner which leaned on his theoretical and practical expertise. In this seminar
teachers were given the task of translating the text of mathematical problems in
written German into German Sign Language. By trying to translate the problems
teachers noticed that their signed version very often included a solution or at least
parts of it. | have therefore come to the following conclusions for myself and teacher
students | am working with: “When translating, make sure that challenging aspects
don’t’ disappear from the problem. In addition, develop your own tasks and
problems directly in German Sign Language, because the linguistic structure of
signed languages is different from the spoken and written language. Problems which
are originally conducted in sign languages use signing more naturally. | am dreaming
of my own task pool in German Sign Language (QR with access to sign language
videos). Maybe it will come about. The signed problems in the Advent calendars are
the first steps.”

At the same time, it is important that we also provide access to written language and
practice reading skills. You always have to decide whether you only want to discuss
mathematical problems or whether you also want to practice using German. For us,
it's always a double task. Dealing with signed problems or text problems is a huge topic
in itself. | hope that will address this didactically challenging topic separately at
another point in the future.

The bottom line is this: Mathematics and language are closely linked. And in order to
give deaf children access to mathematics, it is necessary to provide them with linguistic
tools.

Closing the practical considerations and examples provided by Olga Pollex we
recommend her teaching materials, which can be found
here: Frau TAUBe | Unterrichtsmaterialien bei eduki.com

We would like to follow on from Olga Pollex's conclusion and move on to the
explanations in which various areas of mathematics are discussed in sign languages.
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Outlook on the Didactics of Algebra, Geometry and Stochastics in Sign
Languages

In this chapter of the handbook, we have taken a look at the theory and practice of
teaching mathematics, and in the last section we have seen a number of excellent
concrete examples from different areas of mathematics. These examples show
impressively how mathematics and Sign Languages can be linked. In the following
chapters, research results from didactics of mathematics that take into account the
special needs of deaf learners are presented. In Dialog between researchers and
practitioners we would look for new ways to link algebra, geometry and stochastics
lessons on both a theoretical and practical level. The mathematical tasks or problems
developed by Sign Language teachers and researchers in video format can be
supplemented and used as tools for diagnosing and promoting vivid-imaginative and
verbal-logical thinking with objects, pictures and animations as required.

Before we move on to more specific examples of how this can be done in the
classroom, we would like to look at more specific empirical findings that provide
empirical evidence of the importance of mathematical support in sign languages. We
will ask ourselves for example very concrete what does “visual-imaginative” exactly
mean in the context of geometry. At this point, it should be briefly mentioned that it
is about the ability to use images, sketches and models that can be perceived visually
or through other senses, initially as supports and mediators for mathematical thinking
and reasoning, and then to gradually detach oneself from them and operate with
invisible or sensually imperceptible images mediated by signs or words.

Terminology (Mathematics)

Terminology table can be found in the appendix Terminology (Mathematics).
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Appendix

Terminology (Mathematics)

Terminology | Definition Examples lllustration
A plane is a two-
dimensional  subset of

Plane A plane

three-dimensional  space.
A plane is an infinitely large
surface which

completely contains every
line connecting any of its
points.

Illustrated as a xy-plane

Plane figures

A figure is a plane if all its
points lie in a plane.

Plane figures are often
bounded by lines. The non-
bounded exceptions are,
for example, points, rays or
angles.

A two-dimensional
geometric figure
(triangle, square, circle)

The boundary surface of a
three-dimensional solid.

In our example illustration,

each square (plane figures)
lie in different planes.

Copy right: Tino Sell, Swetlana
Nordheimer
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Sides and edges
in 2D and 3D

Sides of plane
figures are straight line
segments that delimit plane
geometric figures.

Edges of three-dimensional
solids are straight line
segments  that  delimit
boundary surfaces of a
three-dimensional solids.

Edges can also be described
as intersections of two plane
figures. For

example, squares.

Sides of triangles

Edges of cubes

die Kante

Copy right: Frau.TAUBe Copy right: Tino Sell, Swetlana Nordheimer
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Corner and
vertices

in 2D and
in3D

The corner or vertex is a distinct
point of the boundary line or
boundary surface of a plane figure or
three-dimensional solid.

The corners of two-dimensional
polygons are the points at which the
sides meet.

The vertices of three-dimensional
solids are points where at least three
planes meet.

For example, a triangle
has three corners.

In our illustration the
corners of the triangle are

marked with letters: .Sr

z_ﬁ and .ﬁ.a,.
Three squares meet in
every vertex of the cube.

The cube has
vertices.

eight

die Kante

Copyright: Frau.TAUBe, Tino Sell, Swetlana Nordheimer
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Pythagorean
Theorem

In a right-angled
triangle, the area of
the square built on the
hypotenuse (c) is

equal to the sum of
the areas of the
squares  built on
the cathets. (a and b):

2

2 2
a“+b°=c

For example, in aright-
angled triangle with

hypotenuse

c=5cm

and cathets
a=3cm4g

b =4 cmig trye;
3% +4%*=57
94+16=25

Copy right: Swetlana Nordheimer
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Base 5

In German Sign Language, and
some other sign languages, the
numbers 1 to 5 are represented
with the dominant hand. The
number of fingers represents
the corresponding cardinal
number. If the number 6 is
reached in the number
sequence, it is represented as 5
with the non-dominant hand
and 1 with the dominant hand.
Similarly, the five in
German Sign Language must
also be represented with the
non-dominant hand for the
numbers 7, 8, 9 and 10, with
both hands representing a 5
for the 10.

Our illustration shows the numbers
6 and 11 in German Sign
Language and  Ukrainian  Sign
Language. In UkrainianSign
Language both the number

6, and the number 11 refer to the
base 5. 11 is represented by 5 + 5
+1.0ne 5 is represented by the
non-dominant hand. Another 5 is
represented through four fingers of
the dominant hand
together, with one

finger extended for the 1.
The representation of the 10 in
Ukrainian  Sign  Language s

partly symbolic, as 4 fingers
together symbolically replace
number 5.

wicTb
sechs

L

Copy right: Maike Beyer

e 0 ® @
o0 5]
® e ® @
eREE
= . ]
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Dialectal sign
variations as
source of
confusion

Due to the dialects
of national sign
languages, differen
t signed numbers
can exist and be
known to the
learners.

The differences can
cause  confusion
with mathematical
rules.

In the Berlin dialect, the numbers 11 and
12 are mathematically confusing.
In this dialect, the number 11 s
represented by tapping the thumb and
index finger together. 11 is often
confused for 12.
The number 12 is represented by tapping
the thumb, index, and middle fingers
together. 12 is often confused for 13.
To avoid these confusions, one options
to represent 11 and 12 the same as 13 —
19, which is by shaking the number which
is added to 10.
When using simplified or alternate
versions of numbers for clarity, it is also
important to show the linguistically

correct version.
For students with language deprivation
syndrome or learning
difficulties, alternate versions of

signs maybe more effective.

Simplified version (Copy right: Frau.TAUBe)

elf [k

Linguistically correct version (Copy right: Frau.TAUBe)
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Successor The successor is | The successor of 5 o " : p 3 : - : .
the next largest | is6.
natural number. The relationship of a successor can be illustrated with number line
. . For example, to " T R
Uoc_o.__sm _uocc.__zm double 6. both Y e 4\.\;‘04 y
algorithm algorithm . )
numbers are signed I
uses a base :.mma in the air. Both fives ’ o\l s of\
shape ) 5 as | are bundled A 74 ,W/\.\\m. A7
mm_‘EBUmq __3M. n together to form a Iy
erman ign
Language to 10 and the _MTEH D H+Dn D

make calculation
easier.

remaining numbers
are added.

Copy right: Frau.TAUBe
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10

Signed algorithms

Deaf people use fingers, both
hands and three-dimensional

neutral space systematically to
add, subtract, divide, and
multiply.

Fingers, hands, and

their movements in space have
special roles
where each element is used as a
buoy when calculating and
anchoring. For example, visual
representations of totals and
subtotals support mental
calculations.

Calculating3x 8
in Finnish Sign
Language and
other examples
are  described
by Rano (2018)

Calculating 3 x 8 in FinSL (Copyright: Rano, 2018)
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Didactical terms (mathematics)

Extended model for mathematical development of deaf learners
based on Yashkova (1988) and Rozanova (1971/1978, 1991)
with a focus on Sign Languages. Developed in cooperation
with Olga Pollex, Swetlana Nordheimer and Viktor Werner

1. Visual-active level
¢ Understanding abstract concepts through practical actions
and mathematical games mediated through sign languages

2. Visual-imaginative level
e Operating with visual and mental images mediated through signs
and words.

3. Verbal-logical level
¢ Articulating mathematical proofs on different levels of thinking
(visual actions, icons and symbols) mediated through signs and
words.
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1. Visual-active level

e Understanding abstract concepts through practical actions and

mathematical games mediated through sign languages

Problem situation

Goal: The chicks should have as much free space as

possible.
Russisch Deutsch English
Mepsan cTagua | Die erste Stufe (anschaulich- | The first stage
(HaanadHo-OelicmeenHoe | handlungsorientiertes . ) . How can you make a fence from a rectangular piece of
. . ) (visual-active thinking) - )
moiwsieHue) dopmupyetca | Denken) bildet sich im | | . cardboard of a given length so that the surrounding
is activated  through the

B MpoLece NpaKTUYecKoWn
npegmeTHOM
OeATeNbHOCTU.  YXe B

KOHLe nepBoro roga
KM3HM OEeTU CnocobHbl K
3MOLMOHabHOMY
nepexnBaHuio
noTpebHOCTH pewnTb
Hec/NoXHble
npakTUYecKkne 3a4aum,
KoTopble JaHbl MM B
HarnagHoum dopme.
dyHKUMA HarnsaHo-

.D_m—v._n._.wmIIOﬂO MbllLNEeHnA
3aK/1l04aeTCA B Nony4yeHnm

CBEAEHWA O  CKPbITbIX
cBolicTBax obbeKTa,
BbIABNSIEMbIX B XOAe
NpPaKTUYECKNX
npeobpasoBaHuUi.

Prozess der praktischen
Tatigkeit am Objekt.

Bereits am Ende des ersten
Lebensjahres kénnen
Kinder, die Notwendigkeit
erleben, einfache praktische
Aufgaben, wenn diese
Aufgaben anschaulich
formuliert sind.

Die Funktion des visuell-
handlungsorientierten

Denkens besteht darin,
Informationen  Gber die
verborgenen Eigenschaften
eines Objekts zu erhalten,
die im Laufe der praktischen
Umformung zutage treten.

process of practical object
activity. Already at the end
of the first year of
life, children can experien

ce the emotional need to
solve simple practical
tasks, which are given to
them in a visual form.

The function of visual-
active thinking is to obtain
information about the
hidden properties of an
object, which are revealed
in the course of practical
transformations.

area is maximized?

Quelle: LbinnsaTa Ha pbIHKE B MeJIKOW KOPObKe, noyemy
OHM He BbInpbiruBatoT (Kypouka | [3eH (dzen.ru))

This problem can be solved practically by children, as
well as adults,

by simply building different fences and estimating the
size of the area using practical means.

How many chicks can fit in the space?
How much free space is there?

The area can also be measured using square
centimeters, square decimeters or other units.
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Additional remarks: From the beginning, language plays an important role. The questions are formulated and phenomena are
discussed in language. These can be video or text recorded and represented in addition to the pictures. In line with Heinz (2000),
it can be said that both children's problem solving, and scientific mathematical experiments include “depictive action-oriented
thinking”. In this type of thinking, practical problems are described and, in a way, recreated and mediated by language. This applies
not only to science, but also to social phenomena, which are often empirically studied and quantified in scientific discussion.
Statistical and linguistic tools measure, perform and recreate phenomena. The structure and course of problem-solving
activities depends heavily on the language in which research questions are posed. The structure of the visual-action-oriented
processes depends on the language in which the leading problem questions are formulated. In this sense, it is also important that
sign languages can help determine the structure of problem-solving at schools in general, and particularly in science.

Abstraction in games and hands-on experiments: Even in an identical situation, the formulation of the question of the maximum
free space for chicks is structured differently in sign languages than in spoken and written languages. In the classroom, similar real-
life problems can be illustrated in stories and playful situations. For example, the children are given little chicks and asked to solve
problems in an action-oriented way

Copy right: Swetlana Nordheimer

If you choose extreme examples, the choice becomes clear. The area of the rectangle is small if the difference between the sides
of the rectangle is large.

Other options for this playful experience could be conducted by drawing the rectangles and laying them out with unit squares. The
teacher could also bring a large box into the classroom and have the children play with little chicks inside. This activity could be
done outside by marking the boundaries of the base of the imaginary box with chalk or string. This could give the children a new
experience of space and area.

Playing requires abstraction. For example, the ability to interpret the rectangles made of pipe cleaners as fences for chicks.
Transfers between the areas of “reality of the chicks in the box”, “playing with little chicks and pipe cleaners”, “mathematics”, and
other games require signed explanations for sign-language-oriented learners. Here, actions can be directly linked to productive
signs that describe them. Even at this level, it is important to use conventionalized lexical signs to enable abstraction processes.
Not all signs or words used for play, storytelling, or mathematical conversations can be visualized. The symbolic function of
language, especially sign languages, is important for successful mathematical development from an early age.
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2.  Visual-imaginative level

. Operating with visual and mental images mediated through

signs and words.

Russisch

Deutsch

English

Conjecture:

The square has the largest area among the
rectangles with the same perimeter.

A3bIK Urpaet ocobyio
ponib B Nepexoae K
HarnaaHo-obpasHomy
MbiwneHunto. CHavana
pebeHoK peluaet
331341 C NOMOLLbIO
NPaKTUYECKnX
LEeWCTBUIA, 3aTem, Mo
mepe HaKonneHus
onbITa, BbipabaTtbiBaeT
6onee paumoHanbHble
cnocobbl X peLueHus.
Torpa peweHune
NPUHUMaETCA yKe B
dopme
npeacTaBneHui, Ha
ocHoBe 0bpa3os
LEeNCTBUIA. BaxHoM
npeanocbINKoW
pasBUTUA HarnAgHo-
obpasHoro
MbILWAEHUA

asnaerca Gpopmupo-
BaHWe yMeHUsn
pasnunyaTb peanbHble
06beKTbl, MNaHbI U
mozenu,
oTpakatolme 3T
06bekTbl. MocTe-
NeHHo AeTu yyatca
BbIMNONHATb
MbICUTENbHbIE
onepauum Ha ocHoBe
BOCMPUHMMAEMbIX
06pasos., He
MaHunynupys
npegmeTamu.

Beim Ubergang

zum visuellen-
imaginativen

Denken kommt der
Sprache eine besondere
Rolle zu. Zunéchst 16st
das Kind schwierige
Probleme mit Hilfe
praktischer Handlungen,
dann, mit zunehmender
Erfahrung, entwickelt es
rationalere Wege zu
ihrer Losung. Dann wird
die Entscheidung bereits
in Form von
Darstellungen, auf

der Grundlage von
Handlungsbildern
getroffen. Eine wichtige
Voraussetzung fur die
Entwicklung des
visuellen-imaginativen
Denkens ist die
Ausbildung der
Fahigkeit, zwischen
realen Objekten, Planen
und Modellen, die diese
Objekte widerspiegeln,
zu unterscheiden.
Allméahlich lernen die
Kinder die
Denkoperationen
angelehnt an die
wahrgenommenen
Images ohne
Manipulationen mit
Objekten
durchzufuhren.

In the transition to
visual-imaginative
thinking, languages
have a special role.
At first, the child
solves difficult
problems with the
help of practical
actions. Then, as
they

accumulate experie
nce, the child
develops more
rational ways to
reach solutions.
Then, the decision
is made in terms of
representations, thr
ough operating
images. An
important condition
for the emergence
of visual and
figurative thinking is
the development of
the ability to
distinguish between
real objects and
models reflecting
these objects.
Gradually, children
learn to perform
thought operations
based on perceived
images without
manipulating
objects.

Proof: graphic The square outlined in red and

(iconic) the rectangle outlined in blue have the
same perimeter. To create the blue
rectangle, we shortened one side of the
square and lengthened one side of the
square.

If we place the two figures on top of
each other, they partially overlap.

When overlapped, there are also two
areas that do not overlap. We call
them ‘remainder rectangles’. Thered
remainder rectangle is larger than the
blue remainder rectangle. This means
that the red square is larger than the
initial blue rectangle.

The statement above applies to the example, as well as to all
rectangles.

It is therefore universally valid. The images do
not only represent specific cases, but all rectangles and squares
with the same perimeter. However, the images are not self-
explanatory (Winter) and only acquire their iconic content and
mathematical significance through linguistic or
symbolic embedding. Accordingly, descriptive visual evidence
must be embedded in sign language in order to be meaningful
for sign language-oriented learners. Ideally, learners detach
themselves from the concrete images and operate with mental
images of rectangles (Kruteski, Wittmann, Kadunz).
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Proofs with actions (enaktiv)

We place the rectangles on top of
We cut out a grey paper rectangle and a each other and compare the
brown paper square. They have the remaining area. To do this, we cut | We place the cut-off gray remaining area on the brown remaining area.
same perimeter. We want to show that | off the piece of the gray rectangle | This creates a difference area in the shape of a square.

the brown square is larger than the gray | that does not overlap with the area | Therefore, the area of the large brown square is larger than

rectangle. of the square. the area of the large gray rectangle.

Didactic remarks: In this activity, the actions with the cardboard rectangles are not self-explanatory. They are only meaningful in conjunction with verbal
explanations. Some linguistic explanation can be replaced with video recordings of each step. However, video demonstration must still be accompanied
by the question, or the assumption must be formulated linguistically. Furthermore, the linguistic formulation can be supported or supplemented by algebraic
symbolism. For example, in her textbook, Kortadze uses the tools of algebra to formulate mathematical statements for 1st and 2nd grade learners without
phonetic or written language. Such algebraic or geometric means can, if necessary, mitigate the need for verbal explanations. However, they cannot replace
verbal formulations. Itis important that the linguistic formulations are perceptible and understandable for the learners. Therefore, the extent of the learner’s
ability to perceive linguistic explanations visually, auditorily or tactilely, according to their individual perceptual capabilities, must be clarified in advance.
Observation by Swetlana Nordheimer: From my experience cooperating with teachers from different schools and researchers from different
universities, teachers and researchers are often not aware of how much spoken language they use, even in so-called “proofs without words” (Nelson). In
these cases, written versions are not always documented and therefore are not accessible to many learners.

And last but not least: How can iconic proofs be made accessible for deaf-blind learners? Tactile signing and tangible teaching media can be used in place of
or to supplement other approaches. In this case, working with enactive media would be particularly relevant. The adaptation of video materials in signed
languages may prove challenging. Once the questions about perceptual prerequisites have been clarified, the next step is to identify which languages and
modalities are perceivable and understandable by the learners and at what level. With regard to language deprivation, it cannot be taken for granted that all
learners and teachers have a command of sign languages at the required level.
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3. Verbal-logical level

e  Articulating mathematical proofs on different levels of thinking

(visual actions, icons and symbols) mediated through signs and

words.

Russisch

Deutsch

Englisch

Formalization through mathematical symbols

CnosecHo-no02u4eckoe
MblWsaeHue Pa3aensioT Ha
KOHKPETHO-NOHATUIIHOE U
abCTpaKTHO-MOHATUIIHOE
MbileHune. boblyo ponb
B COBEpLUEHUM
MbICIUTE/IbHbIX ONepaLmit
urpatoT 06pasbl,
oTpakatoume
HenocpeacTBeHHbIN OnbIT
petei. CHavana
0606LWeHHOCTH
npeacTasieHunin, a noTom
TPEHMPOBKa B Nepexosax K
CNefyoWMM YPOBHAM
0606LeHHOCTM 06pa3os, K
WX yCNOXKHeHuto. Hanbonee
BbICOKaA CcTagus —
abCcTpaKTHO-NOHATUIIHOE
MblLUNEHME,
XapaKkTepusyercs
CNOCOBHOCTbIO Ye0BEKa
CaMOCTOATE/IbHO peLaTb
C/IOXKHble NO3HaBaTeNbHble
3a4a4u, 0606LEHHOCTbIO,
B3aMMOCBA3bLIO U
obpatumocTbio
MbIC/IUTENHbIX AEUCTBUIA,
NPOM3BOAbHOCTbIO B
OneprMpoBaHNM KOHKPETHLIM
1 abCTPaKTHbIM
MaTepuasom, ymeHnem
KOHTPOANPOBaTbL

1 060CHOBbIBaTb CBOU
paccy)aeHuna 1 BbIBOAbI.

Das verbal-logische
Denken wird in konkret-
begriffliches und abstrakt-
begriffliches Denken
unterteilt. Bilder, die die
unmittelbare Erfahrung
der Kinder widerspiegeln,
spielen eine wichtige Rolle
bei der Durchfiihrung von
Denkoperationen.
Zunachst wird die
Verallgemeinerung von
Darstellungen gelbt, dann
die Ubergénge zu den
nachsten Stufen der
Verallgemeinerung von
Bildern, zur Steigerung der
Komplexitat. Die hochste
Stufe - das abstrakt-
konzeptionelle Denken -
ist gekennzeichnet durch
die Fahigkeit einer Person,
komplexe kognitive
Aufgaben oder Probleme
selbstandig zu l6sen,
durch Verallgemeinerung,
Verkniipfung und
Umkehrbarkeit von
Denkhandlungen, Willkur
im Umgang mit konkretem
und abstraktem Material,
die Fahigkeit, ihre
Uberlegungen und
Schlussfolgerungen zu
kontrollieren und zu
begrinden.

Verbal- logical thinking
is divided into concrete-
conceptual and
abstract-conceptual
thinking. Images
reflecting children's
direct experience play a
major role in the
performance of thought
operations. The first
step is the
generalization of
representations. Then
there is training to
transition to the next
levels of generalization
of images, with
increasing complexity.
The highest stage,
abstract conceptual
thinking, is
characterized by the
ability of a person to do
the following tasks
independently: solve
complex cognitive tasks,
generalize,

interrelate and reverse
thought actions,
understand arbitrariness
in the operation of
concrete and abstract
material, and have the
ability to control and
justify their reasoning
and conclusions.

(a+b)-(a—b)=a%—b?

a-

s
-

a b

Source: (168) Binomische Formeln - 3. Binomische Formel -

Ubung 5 | *NEUES KONZEPT* - YouTube

Ugppoe =a+a+a+a=4a
Ugectangte = 2 (@ = b) +2 (a+ b) =4a
T—f.__:_:.‘ = f__h..ﬁ.-..:.v"_a.

\.:3: ference square =b"
5
\.—m.__h.u._, =a
2 2
Aratange = (@—b)(a+b) =a"-b
A =a® p2_p2 A
Square = " _ a® = b= _ARectangle

Following on from the practical, visual, and linguistically
embedded experiments and proofs, algebraic means and
language can be used to describe proofs at the verbal-logical
level. This can be accomplished to a greater extent than
before, supplementing and perhaps replacing other linguistic

means.

The transitions between geometry, algebra and other areas of
mathematics are often mediated by language. In these cases,
sign language supplements, explanations and formulations are

indispensable for sign language-oriented learners.
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Alxy) =(x-ylx +y)

Assume that the perimeter or side of the
square is known. For example, let ¥ = 5

The function AA(%¥) = (X = ¥)X + ¥) describes
the change in the area of a rectangle as a
function of the side length of the square ¥ and
its lengthening of one side of the square by ¥ or

shortening of the other side by Y.

All solutions for ¥ = 5 can be
represented using the green plane. They
lie in the intersection curve between the
violet and green planes and form a
parabola.

The parabola has its maximum in the vertex,
which lies exactly above the x-axis, where ¥ = 0

With regard to sign language embeddings, the
representations of functions in 3D are interesting
and provide new views. However, one could also
start from a concrete scale and examine functions
of a variable and their graphs in the plane.

If the perimeter of
the rectangle is
given and the
change in a side’s
length is described fE Y
by x, then the R
value for the 1 T A
maximum area is | 2 L
at the vertex of i A
the parabola.

Even if the maximum of quadratic
functions can be determined using the
vertex, the means of differential calculus
can also be applied here. For example,
you could graphically illustrate that the
slope of the derivative at the vertex is
zero.

If, for example, you try to optimize not the
area but the volume of a box or carton in
which the chicks are sitting, you quickly
arrive at the third degree functions, where
differential calculus can be helpful.
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Concluding remarks:

At any level of the learners’ thinking development, embedding content through sign
language is impactful on their mathematical development. The levels are not strictly
hierarchical. The “ascent” from the practical-action level to the verbal-logical or
symbolic level of thinking is not the only important factor. Especially in everyday life,
the problems must be translated back into the non-mathematical world to apply them
to non-mathematical reality. For example, the construction of the optimal open-top
box for the chicks can provide practical guidance to the conclusion of the original
question. The ability to transfer verbal logic to symbolic knowledge or understand
concepts constructively is foundational to engineering and architecture. The bridging
of different levels of mathematical thinking and areas of mathematics (i.e. geometry,
algebra, stochastics etc.) to technical sign languages and didactical aspects is in need
of further development.
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3. DeafDidaktik-critical View of mathematical Text Tasks
Staudt, B., Sieprath, H., Karar, E., Baklaci, M., Schmidt, D. & Grote, K. (2024) *
Competence Centre for Sign Language and Gesture (RWTH Aachen)

In the context of an empirical study on DeafDidaktik by Staudt (2024) in mathematics
lessons with deaf students whose first language (L1) is German Sign Language (GSL), it
was repeatedly observed that working on mathematical text tasks is associated with
specific comprehension difficulties.

These issues were discussed and analyzed with the DeafDidaktik-Team at the SignGes
Competence Centre for Sign Language and Gesture at the RWTH Aachen University
under the direction of Dr. Klaudia Grote. Based on these considerations, a
DeafDidaktik adaptation of a text task designed for hearing children was developed,
resulting in a mathematical text task tailored to the needs of deaf children. To assess
the efficacy of the adapted task, a preliminary empirical study was conducted, in which
a 'kangaroo task' was presented to two ten-year-old children: one hearing and one
deaf.

Note: The so-called 'kangaroo tasks' are an example of a pedagogical approach that
originated in the Australian education system and has since been adopted in a
European mathematics competition. The kangaroo tasks have been employed in
Australian educational institutions since 1978, with their implementation in German
schools following 4 years later. The objective of these tasks is to provide support and
challenge for students in the third and fourth grades regarding mathematical learning
(for further information, see
https://www.mathekaenguru.de/international/index.html—09.11.2024).

The text task from the 2021 Kangaroo Competition, which Staudt introduced to the
schoolchildren in a preliminary study, is as follows: In a modest cinema, five
companions occupy an entire row. Paul is not seated in the fifth position. Anabel, on
the other hand, has selected the first seat. Lynn is situated between Joshua and
Selin. Thus, the question arises as to the precise location of Lynn's seating.

The hearing child with German as their first language (L1) solved the task promptly
and accurately. The deaf child, whose first language is German Sign Language (DGS),
acquired at a relatively late stage, and German, which may be considered a second or
even third language acquisition due to the Russian migration background of the
parents, experienced considerable difficulties in reading and understanding the above
text task. Subsequently, the child was presented with a translation of the task in DGS.
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The child's feedback and reactions suggest an enhanced comprehension of the signed
task. Nevertheless, despite the translation into DGS, the child could still not
comprehend the mathematical methodology for completing the task.

Subsequently, the child was presented with an animation of the content, designed
following the principles of DeafDidaktik and edited with the software PowerPoint.
Immediately following the initial presentation, the child demonstrated an
understanding of the context depicted. In a second iteration, a brief signed
explanation of the task was additionally provided, facilitating comprehension of the
mathematical approach and enabling the child to complete the task.

For the DeafDidaktik-version of the text task, DeafDidaktik-principles had to be
applied, which required a three-phase DeafDidaktik-analysisin advance. The final
presentation of the material included videos in German Sign Language (DGS) and
PowerPoint slides with corresponding animations and transitions, each incorporating
Principles. These included an inductive style of explanation, subject-object buoys, a
signed elimination strategy, localization, and changes in perspective. This was
achieved by applying sign classifiers and, in addition, constructed action (CA) or
constructed dialogue (CD) (Grote, Sieprath, Staudt, Fenkart & Karar — Work in Progress
2024). Furthermore, elements of DeafScience were incorporated, including the
presentation of sign language videos in circular formats with color-coded frames to
differentiate between them. In this case, the color 'white' represents the introduction
of the task, 'blue' represents additional explanations, 'red' represents the question,
and “green” represents the answer or solution (Sieprath et al., 2024).

This preliminary study indicates that deaf students encounter various challenges when
solving mathematical tasks in a written form. These text tasksrequire the students to
employ a variety of decoding procedures or processes, including decoding the
content, translating the written text into mathematical codes, and solving the
mathematical problem.

Considering the findings of this preliminary study, this video presents the initial criteria
for creating signed DeafDidaktik videos for mathematical tasks. However, it is essential
to note that these criteria require further empirical investigation in educational
contexts.
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4. Signing about Variables and Equations
Angeloni, F. & Hausch, C.
Introduction

Bilingual practice with a sign language and a written language is fundamental in
teaching sign language-oriented pupils. However, the characteristics of sign languages
should also be considered in education research (Grote et al., 2018). Over the time
studies have shown that sign languages can influence the teaching and learning of
mathematics in such a way that significant differences to spoken language practice
can sometimes arise. Some recent examples of such studies in mathematics education
can be found in Krause (2017) and Wille (2020). It has also already been shown, for
example, that “[...] the use of sign language space in the mathematics class can have
a decisive function, e.g. [...] in the acquisition of specialist and technical sign language
signs that do not (only) consist of certain signs for specialist and technical terms of [a]
spoken language” (translation from Angeloni, 2023, p. 532).

In this chapter, basic notions and concepts of elementary algebra —such as “variable”,
“equation”, etc. — are considered from a sign language perspective based on results of
a broader project on teaching and learning elementary algebra in a sign language (cf.
Angeloni et al., 2022; 2023). In the first section, the investigated variable aspects and
a central property of sign languages, iconicity, in mathematics are presented. Then,
key principles for teaching in a sign language and the learning environments that were
used in the project are presented. Selected results on the object aspect, the
substitution aspect and the shell aspect of variables are explained and possible
implications for mathematics teaching are discussed. Unless otherwise stated, the
signs presented here are signs of Austrian Sign Language (OGS).

Variable Aspects

Variables are various and can be viewed from different points of view: Object aspect,
substitution aspect, calculus aspect (Malle, 1993) and shell aspect (Wille, 2008). Under
the object aspect, a variable is defined as an unknown or unspecified number (Malle,
1993, p. 46). According to the substitution aspect, a variable functions as a placeholder
in which numbers may be inserted (Malle, 1993, p. 46). The placeholder vanishes when
anumber is assigned to it. This placeholder remains under the shell aspect that means
a variable is like “a cover or a box for the number but it is still here” (Wille, 2008, pp.
422-423). According to the calculus aspect, a variable can also be only a sign “with
which one may operate according to certain rules” (translation from Malle, 1993, p.
46). Here we examine how these different variable aspects could be related to each
other.
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Fig. 1a Fig. 1b Fig. 1c Fig. 1d Fig. 1e

Figure 1. Iconic signs of OGS in mathematics

Iconicity is a property common to all sign languages. Signs that show a direct or
indirect similarity to the referred are iconic signs. In the first case, the signs are defined
as pictorial, in the second case as schematic icons (Kutscher, 2010). According to
Kutscher (2010), pictorially iconic signs are divided into those whose hand shape
resembles the shape of the referred and those in which the movement path of the
sign resembles the shape of the referred: One example is the signin Figure 1a, in which
the shape of the hands resembles the round brackets around a term. Another example
is the sign in Figure 1b, in which the movement path of the index finger of the right
hand imitates the shape of a round bracket. Wille, who theorizes as Kutscher iconicity
according to Peirce, distinguishes further between “mathematical signs in which the
movement path imitates an action on mathematical inscriptions” (translation from
Wille, 2020, p. 206) and give as an example the sign ROUND-OFF in Figure 1c (drawn
from Wille, 2020, p. 207).

The indirect similarity to the referenced is not realized by the schematic icons through
the hand shape or the movement path, but via schemata: “knowledge structures [...]
that make it possible to interpret experiential data according to cognitively anchored
standard patterns of objects, events, situations or action sequences” (translation from
Kutscher, 2010, p. 96). These signs are also differentiated according to the type of
indirect similarity: 1) Signs with a “metonymic relationship” imitate something that
stands for the referred: this is often a relationship from the part to the whole or vice
versa. An example is the sign MATHEMATICS (Fig. 1d), which — with the exception of
regional variants — differs from the sign NUMBER only in the mouth image. The
metonymic relationship exists to the extent that “in mathematics (among other
things) one deals with numbers” (Wille, 2020, p. 202). 2) Signs that imitate an action,
typically manipulating what is being referred (Kutscher, 2010): The sign CALCULATOR
in Figure 1e (drawn from Wille, 2020, p. 203) is an example for that. Here, the action
of typing is imitated. This means that both the calculator and the typing itself can be
expressed. 3) Signs that imitate an action from which the referred results: The sign
NUMBER (Fig. 1d) again is an example of that: if a number can be seen as the result of
counting, so the movement of the sign NUMBER imitates “counting in sign language”
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(Wille, 2020, p. 202). Iconicity can also be intra-linguistic: signs exhibit similarities to
other signs. In the context of calculating interest, an example in DGS (German sign
language) is the sign for “credit”, which is like the sign for “to lend” (Krause, 2016).
This example can also be found in some regional variants of OGS.

Teaching in a Sign Language

For the bilingual mathematics class with a sign language, “various modality-related
structural differences between spoken and signed languages should be taken into
account” (translation from Grote et al., 2018, p. 435). This includes a higher degree of
iconicity in sign languages than in spoken languages, due to which there is a stronger
coherence between the signs and the properties of the referred, which “can be
experienced directly in a sensory — embodied — way” (translation from ibid., p. 428).
In mathematics classes, therefore, “the type of explanations should correspond with
the iconic aspects [...]” (translation from ibid., p. 433). Another characteristic is
centering: “A [...] topic is [...] placed at the center and [...] a syntagmatic context is
established” (translation from ibid., p. 429). This means that different concepts that
are used together are placed in relation to each other around a central concept.
According to Krause (2016, p. 578), “car”, “road”, “drive” and “fast” are examples of
concepts that can stand in a syntagmatic relationship. A syntagmatic context can be
created by changing the perspective, i.e. switching from one specific concept to
another in order to describe it “in more detail” (Grote et al., 2018). This would mean
in the mathematics class, for example, that a specific central topic should be placed at
the center around which further “knowledge units that can be experienced with the
senses are placed” (ibid., p. 430). This raises the question of how coherence would
manifest itself in signing about variables and what should be placed at the center.

The Design of the Study

In a 60-minute session, the participants, adults with OGS as their basic language, work
in groups of three to four on a learning environment with various tasks according to
the “think-pair-share” principle (cf. Ruf & Gallin, 1999). The study comprises several
learning environments, each focusing on one aspect of variables, and each session
comprises only one learning environment. The tasks are designed in OGS and videos
are used instead of a task sheet. The sessions are also accompanied in OGS and
recorded on video. The video material is evaluated in two phases: In the first phase,
relevant passages are documented with glosses, images, possible translations (to
German) and video excerpts. Interviews are conducted with the participants based on
this documentation. The whole process from developing the learning environment to
the evaluation of the video material takes place in OGS.
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The Learning Environments

Fig. 2a Fig. 2b

Fig. 2c Fig. 2d

Figure 2: Excerpts from the videos that are used as tasks

The tasks are based on the ,, Knack-die-Box“ (en. crack the box) learning environment
(Affolter et al., 2011): Blue and red boxes contain an unknown number of matches,
but two boxes of the same color always contain the same number of matches.
Equations as in Figure 2b are formed from such boxes and single matches. The
following applies: The total number of matches in the left-hand arrangement should
be the same as in the right-hand arrangement.

Two learning environments focus on the object aspect (Angeloni, 2023): One learning
environment comprises three matches that are placed one after the other in a c-shape
(Fig. 2d). After three matches are placed, the video asks about the total number of
matches. After the fifth time, only the fact that some matches (in the c-shape) have
been placed again is signed, but not how many. The question about the total number
is asked again. In the second learning environment, an arrangement of boxes and
matches is signed in each of the tasks (Fig. 2a) and the participants are asked how
many matches are in a red box and how many in a blue box.

In the learning environment focusing on the substitution aspect, each time an
arrangement of boxes and matches is shown in the video together with the
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corresponding equation and a table with values (Fig. 2b) (Angeloni, submitted). The
video shows that one value for x and one for y from the table are substituted into the
equation and the resulting expression is simplified as far as possible. The tasks in the
learning environment about the calculus aspect are similarly designed: an
arrangement of red boxes and matches was shown in the video together with the
corresponding equation (Fig. 2c). Then an equivalence transformation was always
carried out first on the equation and then on the arrangements of boxes and matches.
Once the solution has been obtained, the students are asked about the relationship
between the equation and the arrangements of boxes and the transformations.

A possible Relationship between Variable Aspects

Although the learning environment on the calculus aspect was implemented, the
evaluation of the data collected has not yet been completed. A selection of results
from the other learning environments is therefore presented below. The signs are OGS
signs that the deaf participants signed in the respective surveys, as well as findings on
the use of these signs from the interviews with the participants. The signs are labeled
with glosses. Figures 3a to 3d, 3f and 3g from Angeloni (2023, p. 531) and Figures 4a
to 4e from Angeloni (submitted) are also taken up and explained further.

The Object Aspect

AR
/T
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Fig. 3a Fig. 3b Fig. 3c Fig. 3d Fig. 3e Fig. 3f

Figure 3. Signs in relation to the object aspect of variables

The signs in Figure 3 express different facets of the object aspect of variables: The sign
EMPTY (Fig. 3a) was used to express that the variable does “content” any number. The
number is therefore not present. The sign in Fig. 3b conveys the information that the
number has not yet been assigned to the variable or has not yet been communicated.
The sign OPEN in Figure 3c expresses that it is unknown whether and which number a
variable will assume.

The signs in Figures 3d to 3g are directly similar to the sequence of c-shaped matches,
so that these signs are pictorially iconic: The c-shape of the sign in Figure 3d resembles
the shape in which three matches are placed each time. On the one hand, the
movement of the sign resembles the shape of the sequence in which the c-shapes of
matches are placed (cf. Fig. 2d) and, on the other hand, the action of placing twice
three c-shaped matches. The sign in Figure 3e can be similar explained, but the hand
shape only emphasizes a certain characteristic of the c-shape, namely that the c-
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shapes can be understood as two-dimensional figures. The sign in Figure 3f describes
the number of matches that make up a c-shape in the sequence, and its movement
also resembles the shape of the sequence in which the c-shapes lie. Therefore, a
pictorial iconicity can be observed here. The signs can also convey further information:
The sign in Figure 3d also expresses the exact number (two) of c-shapes and in Figure
3f it is signed that four c-shapes are lying or being laid. The fact that there are exactly
four can be deduced from the context in which it was previously signed that three c-
shapes are already in the sequence and another one is being added. Without this
context, the exact number would not be apparent, as a triple or more frequent
repetition of a sign generally only expresses a plural. The exact number would usually
be signed beforehand. The signs in Figure 3e and 3g express that the sequence
continues indefinitely. In the sign THREE (Fig. 3g), the movement also stretches the
range for the number of c-shapes in the sequence and the hand shape conveys that
the total number is a multiple of three.

The Substitution and the Shell Aspect of Variables
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Fig. 4a Fig. 4b Fig. 4c Fig. 4d Fig. 4e Fig. 4f Fig.. 4g

Figure 4: Signs in relation to the substitution aspect of variables

The signs in Figures 4a to 4d are pictorially iconic because they are directly similar to
the written image with the table of values above the equation (Fig. 2b). In addition,
the first two signs (Fig. 4a and 4b) imitate an action in which something is taken from
the table and is placed where the equation is. This means that a number from the
table is substituted into the equation. This action can also be imitated with the
corresponding number sign, as in Figure 4c, in which it is signed that 2 is substituted
into the monomial 4x. A similar action can be seen in the sign in Figure 4d, but the
hand shape is that of the “x” from the finger alphabet. This creates a metonymic
relationship between x and the value from the table that is to be substituted into the
equation. These signs can therefore be classified as schematic icons.

The sign construct in Figure 4e consists of the number sign THREE behind the sign X.
This expresses the shell aspect of variables: The sign X acts as a placeholder into which
the number THREE is inserted and remains. The shell aspect is also “visible” in the sign
CONTENT (Fig. 4g), which metaphorically expresses that a variable is like a container
that can contain a number and can be counted to the schematic icons. This can also
be seen in the sign EMPTY (Fig. 3a), which expresses that a variable “does not contain
a number”. The sign in Figure 4f is a pointing sign and is used in different ways:
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Sometimes it was used to point to the location of the term in the sign language space
where three is going to be substituted for x, and sometimes to point to the individual
locations in the sign language space where x was previously placed. Neither a direct
similarity to the picture with the equation nor a schematic iconicity could be
determined here.

Discussion about the Centrality of the Shell Aspect of Variables

The results presented here show that there are different signs that can be used to sign
about variables and actions with them. For a variable under the object aspect, i.e.
when a variable stands for an unknown or unspecified number, three signs (Fig. 3a to
3c) were observed that express different facets of this aspect. As already explained in
Angeloni et al. (2023, p. 4223), the NOT-YET sign conveys that the number for which
the variable stands is unknown. Angeloni (2023, p. 530) adds that the number will
“become known” and that the sign EMPTY (Fig. 3a) expresses that the number remains
unknown. However, there is another difference between the two signs NOT-YET (Fig.
3b) and EMPTY (Fig. 3a), which can be derived from the use of these signs outside the
mathematical context. The sign EMPTY indicates that something is empty. If the sign
CONTENT (Fig. 4g) — according to that a variable would be regarded as a container —is
considered in relation to the sign EMPTY, then the unknown nature of the number
would be expressed in the form of an empty container (an empty variable), which
places the shell aspect in the foreground. This aspect can also be observed in the case
of the substitution aspect, for example by the sign construct in Figure 4e. The extent
to which the shell aspect will remain in the foreground can be further investigated in
the learning environment about the calculus aspect. The possible influence of the
learning environment “Knack-die-Box” should be considered here, because the
consideration of a variable as a box or as a shell is already suggested there and sign
languages have a wide range of possibilities to refer to something, not least because
of iconic properties.

. /EMPTY
./ . objectaspect ~—— NOT-YET
P ———————— —
\ \ ™~ open
- /
shell aspect Substitution aspect

.\ / / CONTENT INCLUSION

\ | / calculus aspec

Figure 5: Network of the aspects of variables

Assuming that the shell aspect plays a key role, this could mean for the practice of
mathematics teaching that the shell aspect could be seen as a “central” variable aspect
around which “further variable aspects” can be located and thus all aspects can be
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placed in a syntagmatic relationship to each other. From this perspective, for example,
the object aspect, the substitution aspect and the calculus aspect would be regarded
as the “further variable aspects”. Furthermore, there would be different facets for the
individual aspects, which can be expressed with signs of different iconic types (e.g. Fig.
4b and 4e as well as 3e and 3g) and have a certain direct sensory (embodied)
experienceability. This can be observed in the fact that some of the signs from the
learning environment about the substitution aspect have a (schematic) similarity to
the action of substituting in the foreground. A resulting network could look like Figure
5. In this network, it would be possible to switch the perspective from the central shell
aspect to another aspect or a specific facet and take a “closer” look at it.

) -
)

Figure 6: a possible sign (of OGS) for “substitution”

In mathematical sign language discourse, the shell aspect can also serve as a buoy that
can be repeatedly referred in order to express further properties of the variable. In
addition, the centrality of the shell aspect suggests that the signs INCLUSION (Fig. 6),
which has a high iconic coherence with the sign CONTENT, could also be used as a
“general” technical sign for the notion “substitution”. The iconicity, the possibility of
centering an aspect as well as the possibility of changing the perspective and the
consideration of further characteristics of sign languages could also suggest that such
an organization of the variable aspects as presented here in other sign languages is
possible. On the lexical level, where there are differences in the various sign
languages, at least the signs CONTENT and INCLUSION can be found in a similar form
in some other sign languages (cf. Sign Language Dictionary, 2018).
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Short
Terminology Example lllustration
definition
variables Variables Variables are usually Variables can occur in different mathematical expression such as
are tools written with single
for the letters such as *» ¥+ = x+3y=4+y
general etc. and can have or in as a sequence of boxes and matches
representa | many different
tion of meanings. They can
matters. stand for an unknow . E _ _ :
number, or they are
only a symbol to
calculate with
according to specific
rules.
equations An There are many

equation different  types of
consists of | equations. An Example
a term, an | for an equation looks
equal-sign | like the following linear
and aterm. | equation

2x-6=12

STEMSIL
Algebraic Terms



terms Constants For example, aterm | 2y — 6
and can consist  of
variables numbers, a variable w
are terms. | and a basic | *
The result | mathematical 2
.| x-6
of an | symbol such as in
o_n.umﬂmﬁ_g the following term P,
with terms . eoee o °
is also a|2x—6 see o e ® .
term. oo o o o o ® .
o0 o000 0000 000 00
box- 4
value Number -10 m y A3
™ 'y
T
%. Yl
Terms can have also a value. So if you
replace x with 1 in the term them you
obtain the value.
substitution | Substitutio | We  assigh  the | We assign the number 2 to the variable
n consists | number 4 to the | x and the number 1 to the variable y in
of variable the term 3x—5 + 2y.
replacing a | _ 2y —6 . .
variable by Xjhp &X=06 We get 3%2-5+2*1. .z.o<s we can
a number calculate the result. This is 3.

We get 2.
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Sequence

A list
consequently
numbered
objects.

of

There are a lot of
different sequences
such as the sequence
of  positive  odd
integers

1,3,57°911,13,..

and the sequence of
positive
integers
divisible by 3
from 1 to 20

3,6,9,12,15,18

Sequence of numbers
1,2,3,45,6,7..

2,4,6,8, 10,12

..-20, -15, -10, -5, 0, 5, 10, 15, 20

ODOOOO

Sequence of numbered circles

N

x
|

o~
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calculus

A set of rules to
solve specific
problems.

Solving an expression with different operations and

terms such as
2x-6+3x+10

according to specific rules. Another problem can be
solving an equation. For example, there are
different rules for the equation

2x+3=3x+1

that can be applicate to calculate the value of the
variable x so that if you substitute this value for x
and solve the operations on both sides of the
equations the same result must be given. In this
equation, we can subtract the number 1 on both
sides of the equation. The equation becomes the
one in the second row. We can here subtract the
term 2x on both sides of the new equation and
obtain the solution for the equation in the first row.

5
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A
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b
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P
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P
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2x43L 1 axea

AXf2 +

elementary
algebra

Elementary
algebra deals
with variables,
terms,

equations,
inequations and
systems of
equations or
inequations.

The chapter linear equations in the secondary
school.

7
sif. _H_x.fo.+ a, o

Wyl =gl

3x
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Didactical Terms

Terminology | Short Example lllustration
definition

Object aspect | A variable | The variable x stands for the number of | The variable x stands for the number of
stands for an | matches in a red box, but we do not | brochures that a person is going to deliver.
unknown know how many matches are in the box.
number.

Substitution

A variable is a

We assign the value 6 to the variable Z.

aspect placeholder for
a number that
vanishes when
a number s
assigned to it.
Shell aspect Avariableis like | The sign construct in the Austrian sign
a cover for the | language with the sign THREE behind the 2 g _ _ 8 _ 2
number that is | sign X.
still here. X4 ye Leyedex
Think-pair- Method for | Inthe mathematic class the students get '
share teaching that | a task. Each student tries to solve it and 7

improves the
communication
between the
students.

explains her/his own possible solution to
another student. At the end the whole
class deals with the discussed solutions
from the pair discussions.

=
=
=
o
5
B
o
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Learning
environments

A set of tasks
with a
specific
learning
target.

The students get a first task with red and
blue boxes and some matchsticks that
build an equation. The students must solve
this equation by moving sticks and boxes.
In the second task they must write the
equation with symbols that matches the
equation with the boxes. In a third task the
students must invent some other box-
equations and swap this with each other.
More tasks are possible.

Iconicity Iconicity can | The sign of the Austrian sign language for a &

be seen as | round bracket.

the similarity

of a sign

language

sigh to the

referenced

object.

The sign and the symbol for an open round bracket

Variable Variable For example, a variable can be written with
aspects aspects single letters, but also with words or other 9 \Je

describe symbols. A variable can stand for a number X X E + -

what you can | that we do not know, we can set a variable

do with | equal to a number and we can substitute a X&X=2x

variables. variable with a number. We can also see a

variable as a symbol with which we
calculate according to specific rules.
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5. An Example of a Task from Ttochastics with German Sign
Language (DGS)
Warmuth, E., Nordheimer, S. & Sell, T.

Introduction

This article presents a task for primary school Math’s lessons that lies at the interface
between geometry and stochastics and is primarily intended to contribute to
stochastic thinking. Geometric knowledge and skills are a prerequisite. The first author
of this article is familiar with the didactics of stochastics and was unable to find any
articles on the problems experienced by deaf learners in connection with stochastics
during a (brief) search on the Internet. This article should therefore be seen as a
suggestion from a layperson and feedback is welcome.

The Importance of Stochastic Thinking

Random phenomena are an integral part of our world. Tomorrow's weather cannot
be predicted with certainty, the lottery numbers defy prediction, agricultural yields
fluctuate, whether we catch the flu or not depends on many coincidences. Opinion
research institutes do make predictions about the outcome of the next election, but
they are by no means certain and have often been very wrong. We are confronted
with statements about random phenomena almost every day and very often we have
to make decisions under uncertainty. As responsible citizens, we need stochastic
thinking to be able to interpret such statements sensibly and make well-founded
decisions. The term ‘Stochastics’ comes from Latin and means the art of skillful
conjecture. The mathematical discipline that deals with this is Stochastics. Due to the
importance of basic stochastic education, elements of stochastics are firmly anchored
in the educational standards from the beginning to high school graduation. However,
this continuous line from first grade was only completed with the conference of
ministers of education of the German stats or Kultusministerkonferenz (KMK, 2004)
resolution on educational standards at primary level.

Jager and Schupp (1983, p. 15) justify the inclusion of elements of stochastics in
primary school lessons as follows: "Similar to the development of the concept of
numbers, the understanding of stochastic phenomena, combined with a concept of
probability, is formed in a long-term, phased process. The development of stochastic
thinking largely takes place during the period in which pupils attend primary and lower
secondary school." The upgrading of stochastics in education policy means that it is
now anchored in curricula and textbooks nationwide, from primary school through to
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A-levels. In our opinion, the 2012/2014 edition of the Zahlenbuch which can be
translated as number book is an outstanding example of the implementation of
educational standards at primary school level. We therefore refer you to
comprehensive information on the basic concept and materials (including a free
download of Zahlenbuch 1 to 4) at www.mathe2000.de.

Experience with Combinatorics Tasks in Sign Language

In December 2022, a collection of tasks in German Sign Language was created in
cooperation with the "Kangaroo of Maths" competition team and a group of deaf
teachers, students and STEM researchers. They are published at https://www.mathe-
kaenguru.de/advent/gebaerden/index.html. The deaf teachers and students were
able to independently select sub-areas of Maths for the tasks. It is interesting to note
that combinatorics was one of the most popular subject areas. The deaf students and
teachers enjoyed formulating combinatorial tasks in German sign language. After the
teachers had tried out all the tasks in class, one teacher told us: "The Advent calendar
made me realize that | haven't addressed combinatorics enough in my lessons."

We would like to build on this observation and present a context that not only contains
interesting combinatorial questions, but also offers opportunities to introduce basic
ideas of probability theory. By choosing a geometric context, we want to address the
(supposed) strengths of deaf learners known from specialized literature and to
facilitate their access. Hanel-Faulhaber et al. (2023) state: "Relative strengths can be
observed in hearing-impaired children and adolescents in the area of geometry
(Pagliaro & Kritzer, 2013; Edwards et al., 2013), which is often associated with the
children's strengths in visual perception (Marschark & Knoors, 2012)." However, it
should be critically noted that the first two studies have a very small sample size, and
the third study was conducted in a university setting. Caution is therefore required
when  drawing  conclusions. In addition, the current collection
https://stemsil.eu/mathe-adventskalender/?lang=de also contains many tasks
relating to the geometric topic of "cubes".

The Potential of the Beetle Task

The task presented in this article is a modification of the 4th task of the 5th example
in the educational standards at primary level (KMK 2004, p. 20). There, the task
consists of finding all the shortest routes from A to Z. It is mainly assigned to the key
idea of space and form and is located in requirement area lll. The reference to the
standards is established as follows:
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e apply mathematical knowledge, skills and abilities when working on problem-
based tasks

® recognize, use and transfer relationships to similar situations, recognize,
describe and use spatial relationships (arrangements, paths, plans, views)

We see the additional potential of this task firstly in a combination of geometric and
stochastic ways of thinking. We thus provide an example of meaningful networking.
This is now a recognized principle in mathematics lessons. Roth (2013, p. 1) writes:
"For mathematics as the science of patterns (cf. Devlin, 1998, pp. 3-4) and structures,
it is characteristic that it searches for relationships between phenomena or
consciously establishes them. [...] In addition, it is essential for learning success to
recognize or establish relationships between the various content areas and to apply
acquired knowledge and skills. In addition, it is advantageous in building
understanding if relationships between phenomena, representations, terms,
concepts, contexts, etc. are established or at least specifically sought." In addition to
networking, the task offers an excellent opportunity for natural differentiation
(Wittmann, 2001).

First Modification Beetle Task

A beetle crawls along the edges of a cube. It starts at corner A and wants to reach the
opposite corner Z. Because it is so small, it cannot see its destination and at each corner
-including A - it crawls in one of the three directions along the entire edge to the end.
But he never goes back. After three edges, he is tired and stops.

What do you think, is it more likely that he arrived in Z after three edges or that he
didn't arrive in Z? Or are the chances the same?

Figure 1: KMK sample task
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This is how the problem was presented (slightly modified) by primary school teacher
B. Winkenbach (2011) in her field reports on a teaching experiment in her 4th grade
class. The terms "Kante" (edge), "Ecke" (vertex), "auf gut Gliick" (on the off chance),
"wahrscheinlich" (probably) are essential for understanding the task and must be
familiar to the children from previous lessons and, if necessary, repeated using
suitable tasks.

Further Modification of the Beetle Task

In cooperation with Tino Sell, we have didactically and linguistically revised the task
text. The revised task is offered bi-modally in German Sign Language (DGS) and in
German. The illustration shows an excerpt from the German Sign Language version of
the task, in which the edge model is linked to the directional signs.

Figure 2: The position of the beetle and the description of the possible paths in DGS

We also present two possible approaches to the task. This corresponds to the idea of
the inductive approach proposed by Grote et al. (2018). In Figures 3 and 4, the
excerpts from the sign language representations of an example of a favorable and an
unfavorable path are linked to the edge model and the corresponding position of the
beetle in the model space or in the corners of the cube.
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Figure 3: Favorable path "The beetle has reached its destination" Figure 4: Unfavorable path "Target missed"

With deaf learners in mind, we think it makes sense to provide colored edges in the
drawing. In variant A for children who are beginning to learn DGS, a physical edge
model is shown, and all sentences are demonstrated on the edge model. In variant B
for children who have a good command of DGS, the physical model is not shown but
only signed. The picture may be superimposed.

Beetle Task

Figure 5: Beetle Task

This is an edge model of a cube. A beetle is sitting in corner A. It wants to crawl! to
corner Z. The beetle's eyes are blindfolded. The beetle feels its way along the edges of
a cube. The beetle stops at each corner and makes a lucky turn. But it never goes back.
After three edges, the beetle is tired and stops. In the picture, the beetle first goes along
the red edge. If it turns onto the light blue edge at the end of the red edge and onto
the pink edge at the end of the light blue edge, it will arrive at Z. However, if it crawls
in the order red-black-orange, it will not arrive at Z after three edges.
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How many paths are possible? What is the probability that the beetle will reach its
destination?

Solution to the Beetle Problem
Task 1: Which paths are actually possible?

The learners should not be given any instructions on how to solve this task. In any
case, they should be provided with cube models, paper and colored pencils. The
colored edges in the template can provide support. Some children will only find some
of the paths, others will find all of them.

Solution to task 1:

We draw a tree diagram (Fig. 6, p. 7) that visualizes the beetle's decisions at each
corner. At starting point A, it can choose green, blue-dashed or red. If it has chosen
green and crawled along this green edge, it is faced with the choice of blue or orange,
as it will not crawl back. If it has now crawled along the orange edge, the last choice is
purple or black. If it chooses purple, it arrives in Z. Its path can be seen on the third
cube from the top. If it chooses black, it misses its destination, as the fourth cube
shows.
Vs

4

Figure 6: Tree diagram for the Beetle Task

98



STEMSiL

The tree diagram is an important tool in combinatorics and probability theory. It
structures/models the real situation and systematically records all cases. Like any
visualization tool, a tree diagram must be acquired by learners. Sill & Kurtzmann
(2019) write: "To set up a tree diagram, students have to break down the complex
process in the task into a sequence of actions or decisions. To do this, it is useful to
imagine the realization of a concrete example and ask which actions are to be carried
out one after the other [...]. You can orient yourself on the verb used in the task." In
our case, it is the sign or the verb for "crawl". At the end of each edge, the beetle
decides where to continue crawling.

The colors in the tree diagram correspond to the colors of the edges of the cube. To
familiarize yourself with this correspondence, you should trace a path in the tree
diagram and at the same time let a (virtual) beetle crawl along the edge model.
Conversely, a path should be shown on the edge model in the tree diagram.

The tree diagram as a modeling tool reaches its full potential in secondary school
stochastics lessons. It makes sense to introduce learners to tree diagrams as early as
primary school when solving combinatorial problems, because: "There are many
similarities between the mental actions involved in drawing up tree diagrams in
combinatorics and probability theory. This is why working with tree diagrams when
solving combinatorial problems is important for further teaching beyond the actual
purpose and can be a good basis for working with tree diagrams in probability theory.
We therefore recommend encouraging children to set up tree diagrams for all suitable
tasks." Sill & Kurtzmann (2019, p. 199)

Some learners may have used a tree diagram to solve task 1, others may have only
found individual paths in their own notation. The complete tree diagram should
emerge from the individual contributions of the learners in the concluding class
discussion. The learners use the finished tree diagram to show "their" paths and, in
doing so, demonstrate the unambiguous correspondence between the paths in the
tree diagram and the crawling paths of the beetle. You could even draw a large tree
diagram with chalk on the tarmac and let the children walk or "crawl" their paths like
beetles. The next task can be solved with the help of the tree diagram.

Task 2: Sort all paths into those that lead to Z and those that do not.
Solution to task 2:

We can simply use the dice images to count that exactly 6 of the 12 possible paths
lead to the destination. To notate and communicate the paths (for the next task), we
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can use the abbreviation with the colors. For example, green — blue — yellow for the
path that leads to the 1st cube from the top.

Task 3: Why does the path green — blue — yellow have the same chance as the path
red - black - orange?

The solution to this task requires a correct understanding of the content of the way of
speaking "auf gut Glick". In this context, the way of speaking means that the beetle
does not favor any of the possible directions. It is not so easy to make a choice at
random without any aids. Think of the game "rock-paper-scissors". An attentive
opponent will usually be able to observe patterns in their opponent's behavior and
adapt to them. In our case, for example, by throwing a dice with two blue, two red
and two green sides — an understanding of the content can be developed or even
initiated. If the beetle is in A, then we can "take away" its decision by throwing this
dice. The children could carry out and analyze this dice throwing experiment. We
rolled the dice 100 times and got the following results:

Color blue red green

Frequency 30 35 35

Table 1: Frequency of the colors, results

These results presented above are completely consistent with the idea of "at random".
With only 100 trials, the observed values may deviate considerably from the expected

value 100 -éwhich cannot be realized anyway. This is another realization that is part

of a substantive understanding of probability statements: we have to allow chance
some leeway. In primary school, we can only achieve a first approximation to this idea.
That is why it is important to start with such explorations at an early age and to pick
them up again and again.

However, if all edges have the same chance at the beginning in A, then this naturally
applies to all subsequent edges for the same reason. No path is favored in terms of
chances. Consequently, all paths have the same chance. The sign for chance can be
seenin Fig. 7.
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Figure 7: The gesture for "probability" or "chance"

Task 4: What is the probability that the beetle will reach its destination?
Solution to task 4:

There are 6 favorable paths to the goal and a total of 12 possible paths of length 3. All
paths are equally probable. A Laplace model is available. The probability that the

. .6 1 L .
beetle reaches its destination is 5=5 Of course, in primary school we will not talk

about Laplace's model, but about the ratio of the favorable paths to all possible paths.
Laplace’s model is a random experiment with the additional condition that all results
have the same probability. To back this up, you can use a good coin, which is often
used to make a fair decision. There are two possible outcomes: "arms" and "tails".

Only one side is favorable for "tails", the coin is likely to fall %falls on "tails".

In Winkenbach's lesson experiment (2011), one pupil commented on this result with
the words "It's a fifty-fifty, so to speak, a draw!" And another immediately put it into
perspective: "But he also got to be lucky!". The last sentence points out that a
probability statement does not allow a prediction for the individual experiment. This
is also a realization that is part of stochastic thinking and should be introduced early
in the learning process.
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Mathematical Terms (Stochastics)

Terminology

Definition

Examples

lllustration

Stochastics

Stochastics is a
field of
mathematics
that deals with
the
probabilities of
eventsin
random
experiments.

Stochastics is
used as a tool for
natural sciences
(biology,
chemistry,
ecology,
neuroscience
etc.), social
science and other
sciences.

34.1%4 34.1%

00 01 02 03 04

=30 p-20 p-o n H+0  P+20 p+30

Quelle: Probability theory — Wikipedia

Random
experiment

Processes that
can be
repeated any
number of
times and
whose outcome
depends on
chance.

® Coin toss

® Dieroll

e Blind
beetle’s
route along
the edges of
a cube

\\\ _\

Quelle: Teopua BeposaTHOCTEN: OCHOBHbIE GOPMY/bl,

npumepbl | KaiibKynaTop BEpOATHOCTU OHAaMH (skysmart.ru)
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Outcome Possible result of a “Number two” when
random throwing a die B
experiment One possible route of the
beetle; whether
successful or not (for
example, green-purple-
yellow)
Event A set of outcomes "All even numbers" E
when throwing a die m
“All ways which lie in the E
base plane of a cube”
Favorable |QOutcomes which “All successful routes of 7
event result in the the beetle” ﬂ e

occurrence of the
desired event

_—_--
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Sample The collection of all possible e “All possible numbers” {1,2,3,4,5,6)
space (Q) outcomes is called the sample when throwing a die >
space of the experiment ( e “All possible routes of
the beetle”
A tree diagram is a graphical
Tree representation of the random e “All possible routes of
diagram experiment. Mimicking the form the beetle” are
of a tree, it uses branches to represented through
represent the subdivision of the branches of the
possible results or processes. tree-diagram
® There are 12 possible
ways; 6 of them are —
favorable.
The probability of an event is a
Probability |number between 0 and 1; the e The probability of the /
larger the probability, the more event “beetle will .
likely an event is to occur. choose successful
Laplace model: route” is 50%, since 6 of
If all outcomes are assumed to 12 ways are realized L ]
be equally probable, then the successfully.
probability of an event is
calculated as the ratio of the 6 y /]
number of favorable outcomes | P(beetle’ssuccess) = IVl e g B g

for this event to the number of
all possible outcomes.

-
rd
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How often something

8 children were asked what

Frequency
AocHnOBm.\ m<m3¢. ) they would like to eat
occurred in a statistical
experiment ® 3like bananas
® 1 like pineapples
® 2 like carrots
® 2 like strawberries
The frequency of children who
like bananas is 3.
Relative The relation between ® 3 of 8 children like
frequency |how often something bananas. The relative

occurs in relation to
frequency of all
outcomes

frequency of children
who like banana is 3/8.

f There are 8
m f possible choices.

3 of them are

| # Qm bananas.

Quelle:
https://i.pinimg.com/originals/01/d7/32/0
1d7326f42eefb0aaf0d45f5dbb3ab22.jpg
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Didactical Terms (stochastics)

Terminology | Definition Examples lllustration
Experiment Once the ® The learners can throw a die three times
stochastic model to model the potential route of the beetle.
is chosen the green-purple- .\.
random yellow
experiment can
be conducted.
Stochastic Stochastic Dice, coins, or other "gambling
Modelling models are equipment" which are known to learners — m R—
mathematical from their everyday context can be ”
model which deemed a part of the real-world. When a "

represent or
describe real
processes or part
of it and must be
distinguished

die is referred to as a "random device",
this should mean an ideal die in which all
sides have the same probability and
exactly one side is always on top when
thrown. Such an ideal cube or coin can

7N

Model Consequences

|
|
I
|
\ i /
|
Mathematics |

- ModellNg ——————— ————— Interpreting —— -

Real-world / K

Situartic
fruatien Information

S S

from reality also be used for Laplace experiments. Validating
itself. In our teaching example we choose dice
with colored sides to model the possible |Schupp 1989
ways of the beetle.
Analyze data |Data can be All possible routes can be documented See table above

documented in
tables, charts or
tree diagrams

with sketches of cubes with potential
routes
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Structure Recognise the Possible outcomes of the experiment can See table above
recognition  |structure in be structured with the help of tree

the random diagrams

experiment
Calculations  |Estimate Frequencies can be calculated and See table above

frequencies
and
probabilities
of events

compared with theoretical probabi
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6. Sign Geometry
Nordheimer, S. & Sell, T.
Introduction

Considering Polya’s (1969) theory of mathematical problem-solving, which did not
lose its relevance for didactics of geometry and is still foundational today (Weigand et
al., 2018), stereometry plays a decisive role throughout one’s entire academic career.
According to Frick (2019): “The present findings point to a tight connection between
early mental transformation skills, particularly the ones requiring a high level of spatial
flexibility and a strong sense for spatial magnitudes, and children’s mathematics
performance at the beginning of their school career.” Although Signed Geometry
seems to have positive effects on visual-spatial abilities of all learners (Groninger &
Sieprath, 2019) this paper focuses on deaf and hard-of-hearing learners whose talents
can be overlooked by educational researchers and teachers (Weber et. al., 2023).
When discussing teaching Signed Geometry to deaf and hard-of-hearing learners, we
will first consider the theoretical framework of the mathematical abilities of deaf
learners established and used for empirical studies by Rosanova (1991).

After that, we will refer to empirical findings which deal with geometrical learning and
teaching of deaf learners on one side and visualization of mathematical content on
the other. We will then use these contributions as building blocks for the theoretical
framework (Niss, 2019) of Signed Geometry and derive ideas for further theoretical
and empirical studies, as well as didactical consequences for teaching Signed
Geometry at school. We then introduce concrete teaching examples as parts of the
empirical data we gathered through cooperation with deaf teachers and the creation
of teaching materials for deaf learners in Bonn Math Club to illustrate the theoretical
aspects. The presented example was introduced to the deaf learners and their
teachers as a part of the project Signed Mathematical Challenges in the beginning of
2023. The aim of the given problem is to provide concrete ideas for teaching, to
illustrate theoretical considerations synthesized from different researchers, to apply
them into school praxis and to reflect theoretical and empirical suggestions in
cooperation with school teachers.

Theoretical Background

To describe mathematical abilities and potentials of typically hearing school children,
Krutetskii (1976) combined cross-sectional and longitudinal examinations and used a
precisely designed series of mathematical problems. Due to the size of the research
populations examined in the studies, Krutetskii’s work remains unique in the field of

108



STEMSiL

mathematical education and research focused on mathematical creativity and
giftedness in general (Leikin, 2021).

Krutetskii (1976) differentiated among three distinct types of mathematical abilities
on different levels:

e Analytic — very strong verbal—logical component predominating over
a weak visual—pictorial component; spatial concepts weak; cannot use
visual supports in problem solving and feels no need to use the visual
support.

e Geometric — very strong visual-imaginative component,
predominating over an above average verbal—-logical component;
spatial concepts very good; can use visual support in problem solving
and feels a need.

e Harmonic — strong verbal-logical and strong visual-imaginative
components in equilibrium; spatial concepts good. Subtype (a)
(abstract harmonic) — can use visual support in problem solving but
prefers not to. Subtype (b) (pictorial harmonic) — can use visual
supports in problem solving and prefers to do so.

However, Krutetskii was criticized by Kolmogorov (2001) for not taking into account
the possibility of the special needs of learners who showed outstanding mathematical
talents and performance. Deaf learners, with a linguistic repertoire which includes
signed languages, were not considered either in Krutetskii's, nor in Kolmogorov’s
works. Following Krutetskii’s understanding of mathematical abilities in general,
Rosanova (1991) studied the development of mathematical abilities of deaf learners
in school environments. She would show that Krutetskii’s typology is applicable not
only for typically hearing students but to deaf learners as well. According to Rosanova
(1991), deaf learners who belonged to the group with strong verbal-logical and visual-
imaginative reasoning showed the best performance in school mathematics.

Presmeg (1986) followed Krutetskii’'s research and focused on the connection
between mathematical giftedness and visualization. She asked for reasons why the so-
called non-visualizers - who belonged to the first group according to Krutetskii's
approach - were often more successful in school mathematics than visualizers. Besides
external factors rooted in the teaching methods and learning environments - which
gave more room and appreciation to non-visual and analytical ways to solve problems
in classical mathematical classroom settings - she was searching for internal factors
for the success of non-visualizers. In her interviews with hearing high school students,
she would see that non-visualizers often used general non-visualized formulae to solve
mathematical problems more rapidly. A secondary reason which could prevent
visualizers from successful problem solving when compared to non-visualizers could
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be the challenge to overcome one-case concreteness of the visual image to find
general solutions to mathematical problems. According to Krutetskii, to be helpful in
mathematical thinking and problem solving, the visual imaginary has to be
controllable and generalizable by the problem solver:

The fact is that the graphic schemes used by these pupils [i.e., visualizers of high ability]
are a unique synthesis of concrete and abstract. The 'geometer’ pupils feel the need to
interpret a problem on a general plane, but for them this general plane is still
supported by such images. In this they differ from pupils of little ability - for whom
visual images really bind thinking, push it onto a concrete plane, and hinder the
interpretation of a problem in general form (Krutetskii 1976, pp. 325-326).

In line with Krutetskii’s and Presmeg’s ideas for hearing students, Rosanova (1991)
suggests that to develop mathematical potentials and abilities of deaf learners, it may
be necessary to pay more attention to the generalization processes. We suggest giving
deaf students not only opportunities to create visual images but also to find ways for
the controlled use of geometrical visualizations. In geometry classes, this can be
achieved in two ways. Firstly, it may be helpful to make explicit to the learners when
the image or visualization represents one concrete example or when its aim is to
visualize general propositions.

To communicate about the scope of the geometrical visualization, conventionalized
and productive signs and gestures could be used as instruments for the controlled use
of geometrical images to solve mathematical problems (Nordheimer et. al., 2024).
Secondly, variations of geometrical visualizations and the building of geometrical
patterns from many different cases can be helpful to teach deaf learners how to
generalize geometrical visualizations and to derive general propositions by studying
many cases and comparing them with each other (see also Presmeg ,1986). Later in
this paper, an example will be given showing how this could be achieved in geometry
lessons when referring to the volume of a cube. Rosanova (1991) suggests when
teaching deaf learners to pay more attention to the development of verbal-logical and
so-called visual-imaginative thinking as an interplay of components. We aim to go
further and to find ways to foster verbal-logical and visual-imaginative thinking by
careful and conscious targeted implementation of Signed Geometry and signed
languages into mathematical learning and teaching processes by giving concrete
geometrical examples. To do so, we will first look at some empirical findings
concerning the geometrical thinking of deaf children.
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Empricial Findings

Empirical studies focused on the teaching of geometry to deaf learners stress the
connection between learners' abilities to solve geometrical (and especially spatial)
problems and their general mathematical abilities. Not all studies actively contribute
to the value of signed languages in the development of geometrical skills, but there
are empirical results which support the relevance of teaching geometry in signed
languages. We will present some relevant empirical findings here.

Geometry and spatial thinking of deaf learners

Zarfaty et al. (2004) studied 3- and 4-year-old deaf children’s ability to remember and
to reproduce the number of colored bricks in a set of objects and suggests that deaf
children benefit from mathematical teaching methods that emphasize the spatial
representation of numbers. On the other hand, Chen (2022) found a strong correlation
between spatial ability and the mathematical performance of deaf learners by asking
256 deaf schoolchildren in Grades 3 to 9 in two special education schools in China to
perform cognitive and mathematical tests. Based on another empirical study with 198
deaf and hard of hearing students, Chen and Wang (2020) even suggest that
mathematical achievement of deaf learners depends more strongly on spatial ability
than on specific numerical abilities. However, these findings may depend on the
cultural and educational context of the teaching of mathematics and on specific
educational traditions and systems in China which differ from those employed in
European contexts.

The results of the research of Marschark et al. (2015) also suggest that there is more
empirical evidence proving an advantage for deaf students in the spatial domain than
in the visual domain. This fact leads us to the assumption that it may be important to
expand the framework of the mathematical curriculum regarding stereometry and not
to place such a heavy emphasis on plane geometry as is the current state of affairs
expressed in the traditional curriculum. Marschark et al. (2015) also found that the
“performance of deaf and hearing individuals on the same visual-spatial tasks was
associated with differing cognitive abilities, suggesting that different cognitive
processes may be involved in visual-spatial processing in these groups” (Marschark et
al., 2015).

Relative strength of deaf learners in geometry

Pagliaro and Kritzer (2013) examined the performance of deaf and hard-of-hearing
children, 3—6 years of age, against a developmental trajectory of early mathematics
concepts and skills. The results of these studies show “shape” and “geometry” as areas
of strength relative to other areas. These results are in line with later research
conducted by Wauters et al. (2023) that also found strengths in the geometry domain
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and challenges in the area of measurement in deaf and hard-of-hearing children. The
role of sign languages in the mathematical development of DHH children was not
considered in these studies.

Using sign language is critical for deaf children to develop spatial and geometrical
thinking

To describe the role of signs and gestures in the process of geometrical problem-
solving, we would like to refer to the work of Johnson (1987 cited in Campbell et al.,
1995), who differentiates between abstract propositional structures, image schemata
and particular concrete “rich images.” As an illustration, we will provide an example
given by Campbell et al., (1995). The concept of the triangle and its properties is a part
of an abstract propositional structure. In contrast, a “rich image” is a particular picture
of one specific triangle in the mind of a problem solver. Image schemata build the
bridge between abstract ideas and concrete images. This kind of image use can be
considered as an important step of schematization and generalization of geometrical
visualizations. Productive and conventionalized signs support the generation of image
schemata and have an impact on the perception of geometrical shapes.

The views described above could be supported by older studies conducted by
Dyachkov (1961), who worked with deaf children and young people without the
experience of being educated in orally-oriented schools. Dyachkov’'s study
demonstrates the great role of signed languages in the development of the perception
of geometrical figures and, especially, solids. As evidenced by the study, 7 and 8-year-
old children who did not know signs for the shapes had difficulties with visually
distinguishing geometrical figures and solids. Children who possessed signed
designations picked up objects 2 - 3 times more accurately. At the same time, the
degree of shape distinction directly depended on the degree of knowledge of signs.
Dyachkov worked with children and young people who, for various reasons, were
unable to attend school and were therefore not specifically supported with spoken
language. He discovered that children of deaf parents were more successful in
differentiating geometric figures and solids.

Leaning on Dyachkov’s findings, Suchova (1966) carried out various long-term studies
of geometry teaching in several schools for deaf children. Based on this, Suchova
suggested connecting geometry with real-life instructional scenarios (for example
working with wood and producing objects of everyday life). She also recommended
using geometry as a teaching and demonstration tool to instruct students in other
areas of mathematics like arithmetic. In our teaching example below, we show how
cubes as geometrical objects can help learners visualize cubic numbers like 64. In the
chapter focused on stochastics (Warmuth et al., 2025), you can find out how geometry
can be used to teach stochastics.
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To study the effect of signed languages and specific experiences of perception on the
spatial abilities of deaf children Parasnis et al. (1996) compared deaf and hearing
children. She could not find a significant difference in their performance on the visual
spatial skills tests, suggesting that deafness per se may not be a sufficient factor for
the enhancement of visual spatial cognition. In agreement with Dyachkov, she found
that exposure to sign language and fluent sign skills may be the critical factors that
lead to differential development of visual spatial skills in deaf learners.

Based on empirical results Emmorey (2023) claims that experiences with sign
languages can enhance mental rotation ability. That could be explained with the fact
that comprehending spatial descriptions from the signer’s perspective requires a
mental transformation of locations in signing space (Secora & Emmorey, 2020).

Hands-on approaches to solving visual-spatial problems

Yashkova (1988) aimed to describe deaf children's thinking processes when
performing practical problems of a visual-spatial character. The operations of analysis
and synthesis, inseparably connected with each other in the process of any mental
activity, were of great importance in solving these problems. The peculiarity of the
tasks consisted in the fact that their performance required the ability to switch from
object-action forms of analysis and synthesis to mental ones and then to switch back.
To support the mental analysis of said objects without possibility of action with them,
some participants used signs or gestures which represented actions and operations
within an imagined apron.

Sture (1984) studied how deaf learners solved problems in physics in comparison to
hearing students using problems with spatial components. The problems needed to
be understandable to deaf learners and at the same time require from them an active
analytical approach revealing essential connections. These requirements were met to
a certain extent by setting a specific practical experimental task before the pupils. In
accordance with the instruction, the pupils were to make a ball fall from the inclined
plane into each of the four compartments of the box in turn and explain the results
obtained. Many deaf learners, even before starting the experiments, gave the general
correct solution: they offered to raise or lower the chute depending on the tasks set.
The further content of their actions consisted in "trying on" the height of the launching
point to the necessary range of flight. This was achieved most often during practical
trials, but often students mentally traced the path of the ball, accompanying its
"movement" with imitating signs or gestures, and correlated the predicted range of
flight of the body with the height of its fall. The use of signs or gestures in problem
solving was observed more often in the deaf students as opposed to their hearing
counterparts. As a result of such actions, many deaf students were able to get the balls
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into the desired range interval with sufficiently high accuracy. Their predictions were
often more accurate than those of the hearing students.

Rosanova's (1978) study showed that deaf children used words less often than hearing
children to memorize geometrical figures or solve visually presented problems. They
used more signs or gestures than hearing pupils to support memorization and
problem-solving. Based on these studies with deaf children, Rosanova claimed that
language and thinking form a unit, but they are not identical. It is therefore crucial for
the development of thinking that children learn to operate with mental images. Their
images of objects and ideas should become increasingly generalized and detached
from concrete objects and actions with them. Rosanova assumed that actions, motoric
body movements, models, pictures, gestures, signed languages or other language
systems and modalities regulate thinking and help them to operate with mental
images. According to this view, the best way to develop geometric and spatial thinking
is to allow operations with mental images by solving problems which could be
represented in actions, pictures, models, signs or words in the beginning and to move
toward operating with mental images using signs, gestures or words without using
tangible or visible objects.

Hints that deaf children are natural visual learners?

Presmeg (1986) described visual imagery as a continuum from concrete to abstract
and suggested placing Johnson’s “rich images” at one end of the continuum and his
“image schemata” at the other. In an earlier study, Presmeg (1986) proposed that
there are two types of visual images involved in different situations that have different
impacts on the mathematical performance of students. For example, Pitta-Pantazi and
Christou (2010) suggest for elementary students that one type of visual image is more
figurative, skeletal, symbolic and generic, and the other type is more concrete,
pictorial and colorful. While students with high achievement in mathematics operate
with skeletal, figural or schematic images, students which are not so successful in
mathematics tend to produce more detailed, colorful and pictorial images. This
distinction is similar to the categories “schematic” and “pictorial” used by Blatto-
Vallee et al. (2007) to investigate visual-spatial representations in mathematical
problem solving by deaf students. Comparing the results of deaf students to those of
their hearing peers, Blatto-Vallee et al. (2007) conclude that deaf students use more
pictorial than schematic representation to solve mathematical problems. In this study,
hearing students used more “schematic” representations and outperformed their
deaf peers. A closer look at the study reveals that the items of the study included 15
mathematical word problems without mathematical symbols, geometrical drawings
or sketches. Sign languages or gestures are not considered in the study. For this
reason, the study doesn’t provide insights into the visual-spatial abilities of deaf

114



STEMSIL

learners. But it does provide empirical proof that word problems alone are not
sufficient to investigate the visual-spatial skills of deaf learners and gives us additional
arguments for multi-modal teaching methods like those suggested by Skyer (2023).

Deaf students are often considered visual learners who profit from the visualization of
mathematical teaching materials with “language poor” or even “language free”
learning environments. However, the results of the investigations by Marschark et al.
(2015) showed that performance on the Spatial Relations task was related to the deaf
participants’ language ability in their preferred modality (sign or spoken language).
Using and fostering the preferred mode of communication and instruction appears, in
this case, to be more relevant than focusing on the specific visualization of
mathematical ideas. To strongly emphasize visualization without targeted language
support and teaching in geometry lessons could presumably lead to children relying
too heavily on pictorial and concrete images and prevent them from developing
schematic images of abstract concepts and ideas. We will now summarize the
didactical consequences of our theoretical contributions supported by empirical
research.

Didactical Consequences

Before we give some practical examples for teaching, we would like to summarize the
results of the theoretical findings of the studies mentioned which are relevant for
teaching geometry to children who are deaf and hard of hearing.

® Geometry seems to be an area of strength for deaf children and can be used
to teach other mathematical areas like arithmetic.

e To teach geometry, it is important to connect active operations with models
and visualizations embedded in the language to help students to produce not
only concrete pictorial but also schematic images of the abstract geometrical
concepts.

e Sign languages are not only the preferred mode of communication for many
deaf children, but also the tool which helps them to perceive objects, to
memorize concepts and to solve problems.

e Spatial geometry seems to play a crucial role for mathematical development in
children.

To give some concrete ideas as to how spatial geometry and arithmetic can be
connected by use of signed languages and 3D models, we will now concentrate on the
idea of the volume of a cube as follows below. We would like to make some
suggestions for mathematics lessons starting in 3rd grade. The ideas can be adjusted
to the lessons with older students by implementing fractions and even talking about
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the possibility of cubes with irrational volumes. We entrust teachers as pedagogical
experts with the testing of our suggestions in the school setting and welcome
feedback.

Teaching Example

In our first section, we saw how important it is to teach spatial geometry to deaf
children. It is of great significance that sign language connects the models and
visualizations from the very beginning and contributes to the development of
concrete, but also schematic images. Operating with schematic images can contribute
to the development of abstract ideas. An example of such an idea is the volume of a
cube. There are various approaches that may be applied to the subject. For example,
teachers could cut or saw cubes of plasticine, cheese, soap or even wood into smaller
cubes together with the learners in craft lessons. It is crucial that the actions are
introduced by signs and gestures derived from the actions on the one hand and
documented by videos and pictures on the other.

As an introduction, for example, the origin of the lexical sign that corresponds to the
word "cube" can be discussed with the children. The children can be given a ready-
made cube and experiment with it or be given the task of making their own cube, e.g.
from soap or potato. The aim should be to create a fair die where every number is
equally likely. By analyzing the gesture and realizing it through their own actions, they
can discover that a fair cube cannot be a cuboid, for example, but must be a cube in
the geometric sense. Its edges must be of the same length and its sides must be of the
same size.

Once the children experimented with the lexical form and produced their own cube,
they can be exposed to a productive description of the cube where two flat hands
substitute parallel surfaces of the cube. The children can look at the teacher’s
descriptions and repeat them by forming with their hands all six surfaces. Once they
are familiar with the productive description of the cube, they can try to describe the
height, length, and width of one particular cube presented by the teacher. They can
move toward the generalization of the image by varying the side length of the cube
and by describing the length of the edges of their own cube and then by doing it for
the cubes of their classmates.

The exercises can be documented as videos or photos which can be enriched with
geometrical sketches not only by the teachers but also by the learners themselves.
These variations and documentations would help the learners to move from concrete
examples to schematic representations mediated by conventionalized and productive
signs. As demonstrated by the teacher in the picture, they can first draw the vertices,
which form three right angles and can be interpreted as a part of the Cartesian system
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of coordinates. In this concrete example each vertice is 4cm long which is shown by
the teacher and can be transferred to their own cubes by varying the length.

Results with practical Relevance

Figure 1: The length of the cube is 4 cm
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Figure 2: The width of the cube is 4 cm (excerpts)
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Figure 3: The height of the cube is 4 cm (excerpts)

In the next step, the cube, which is invisible in the video and made visible with help of
transparent images produced by GeoGebra, will be divided by parallel lines into 64
pieces. The children can watch the video without sketches or study the series with
pictures which connect signs and sketches of geometrical solids. The aim is that they
can recognize the actions they completed with soap or wooden cubes. They can try to
count smaller invisible cubes or go back to the model cubes to control their counting.
The actions, the videos and the sketches connected through productive and
conventionalized signs represent concepts by giving the students the possibilities to
build concrete pictures of a bigger cube which is divided into smaller cubes which also
represent cubic number or operation 4x4x4. But it also opens various possibilities to
move forward schematic images of cubes and to grasp the abstract idea of the cube
as a solid with edges of the same length and surfaces where two of them are parallel
to each other. These are properties which can be generalized.
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Figure 4: The distance between the cutting planes is 1 cm.
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Figure 5: Cutting of a cube by parallel planes.
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By cutting different cubes in a similar fashion or the same cube into smaller cubes as
a next step of exercises, students can investigate the concepts of volume and other
units of measurement by imagining cubic units whose side length strives to zero, while
preparing for the complex idea of the volume of geometrical solids by transcending
visible models from the real world.

Figure 6: Transformation of cube in German Sign Language and its wooden model.
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As the cube and its division through parallel planes is precisely described, the main
guestion of the problem can be posed in German Sign Language: How many unit cubes
are there in the bigger cube?

Figure 7: How many unit cubes are there in the bigger cube?
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To conclude our contribution, we will now look back again and make explicit
connections between our theoretical ideas and the concrete examples provided
above:

® Geometry seems to be an area of strength for deaf children and can be used
to teach other mathematical areas like arithmetic.

We used the volume of a cube to visualize a concrete cubic number which can
be interpreted as a result of three times multiplication of the same number.
The number can be interpreted as the amount of cubes in the height, length
and width of the cube.

e To teach geometry, it is important to connect active operations with models
and visualizations embedded in the language to help students to produce not
only concrete pictorial but also schematic images of the abstract geometrical
concepts.

We operated with an invisible cube by cutting it in smaller cubes and
connected it with a wooden model of the same shape.

e Sign languages are not only the preferred mode of communication for many
deaf children, but also the tool which helps them to perceive objects, to
memorize concepts and to solve problems.

We gave a representation of the problem in German Sign Language and gave
the students the possibility not only to see the cube in the wooden model or
in the visually perceived signs but also to feel it in their hands by repeating the
signs themselves.

e Spatial geometry seems to play a crucial role for the mathematical
development of children.

We used a concrete cube with a volume of 64 cm? to introduce the idea of
volume and gave some ideas as to how the presented problem can be varied
by the deaf learners to generalize the concrete created spatial image.

To sum up, we encourage practitioners to present our signed problems to learners, to
find their own ways to describe different cubes with different volumes, to move
further to other geometrical solids and phenomena. We look forward to teacher
feedback and to constructive criticism — a process which is difficult to overemphasize
when it comes to development of educational science and practice.
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Mathematical Terms (Geometry)

Terminology

Definition

Examples

lllustration

Geometry Geometry is a mathematical field Solids like, for example,
concerned with properties of space cuboids, cubes, pyramids,
such as the distance, shape, size, and | cones, and spheres are
relative position of figures. defined by their volume and
surface area, as well as
Solid geometry or stereometry other properties, and plane | e r oz
deals with solid figures. A solid geometric figures are g il
figure is the region of 3D space defined by their perimeter Asrr ) Aw} i .W%a_ag;_g%m
bounded by a two-dimensional and area. These concepts -
surfaces. belong to important @: @: @ V ;
mathematical content . \i ’ = ib Ak " )
Vincenzo De Risi subjects and contexts to Meeting Numbers Head-On: The SAT Math Tests -
(2015). Mathematizing Space: The train mathematical problem- | jummies
Objects of Geometry from Antiquity solving.
to the Early Modern Age. Birkhéuser. | For example, a solid
pp. 1-. ISBN 978-3-319-12102- ball consists of a sphere and
4. Archived its interior.
Geometrical A geometric proof is a deductive For example, to prove the
proof reasoning reached using known facts | formula for the volume of

like Axioms, Postulates, Lemmas, etc.

with a series of logical statements. In
school geometry, visual proofs and
their descriptions can be used as a
less formal method of geometrical
argumentation and preparation for
more precise mathematical methods
and scientific work.

the interior of the sphere, it
can be first shown that the
volume of the hemisphere is
equal to the volume of the
difference between the
cylinder and the cone.

.
« N

09 Koerpergeometrie.pdf (hu-berlin.de) (Filler)
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Square

A plane figure with four
equal straight sides and
four right angles. A square
is a special rectangle with
equal sides.

The cube from our teaching
example has 6 squares. Every
square has 4 equal sides. The
length of each side is 4 cm.

a=4cm

a=dem

a=d om

Cube

A geometric solid bound
by six squares. Each cube
has 8 vertices and 12
edges, which are all the
same length. Cubes are
regular polyhedra
(Platonic solids) and are
also known as hexahedra.

In our teaching example, we
use a problem with a cube
with an edge length of 4 cm.

09 Koerpergeometrie.pdf (hu-berlin.de) (Filler)

Cuboid

A geometric solid which
has six rectangular faces
at right angles to each
other. A cube is a special
cuboid.

In the next example, we will
use a cuboid with following
measurements:
Length=5cm

Height =4 cm

Width =3 cm
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Volume
(cube
and
cuboid)

Volumeiis a
measure of the
space occupied by a
solid. The volume of
a solid is
determined by its
shape and linear
dimensions. The
main property of
volume is additivity,
i.e. the volume of
any body is equal to
the sum of its
volumes of its non-
intersecting parts.

For example, the volume of the cuboid
presented above can be measured by the
number of unit cubes. To introduce the idea to
learners, a transparent box can be filled with
cubic centimetre cubes. To count the cubes, it is
sufficient to fill the box partially to find the
counting strategy and to understand the
formula.

Number of cubes in the box

= number of cubes in a layer - number of layers.
The next step is to move on to the dimensional
number formula:

Measure of the volume
= measure of the length - measure of the width -
measure of the height

(if length, width, and height have the same unit
of measurement)

1]

Every layer has 5x3 = 15 unit cubes.
4 layers fit into the box to fill it up.

V =534¢cm® =60cm?

09 Koerpergeometrie.pdf (hu-berlin.de) (Filler)

dddsidds

o A A e

LEIEEFFrere A
10 1000 cm® = 1 dm?

Source: Heide Kiithne
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Parallel

In three-
dimensional
Euclidean space,
two lines are
parallel if they lie in
the same plane and
coincide and do not
intersect.

A straight line is
parallel to a plane if
it lies entirely in this
plane or does not
intersect it.

Two planes are
parallel if they
coincide or do not
intersect. This is
referred to as
parallel planes.

The opposite sides of a
cuboid are parallel to
each other.

The edges of a cuboid
which are not in the
basic square are parallel
to this square.

The opposite surfaces of
a cuboid are parallel.
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A numerical or sometimes

For example the distance

Distance | qualitative measurement of between cutting planes in our
how far apart geometrical exampleis 1 cm.
objects or points are.
A unit of length refers to any In our examples we measure
Length arbitrarily chosen and accepted | length with cm. Finger
) reference standard for ] 10M |
unit £ lenath C
measurement of length. T A -
0 1 2 3

Source: Heide Kiihne
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Volume

unit

A unit of volume is
equal to the
volume occupied
by a unit cube with
a side length of
one. Since the
volume occupies
three dimensions, if
Lis chosen as a unit
of length, the
corresponding unit
of volume is L3

Since we have
chosen cm to
measure length,
we can use cm3
to measure
volume of a cube
in our example.

The volume of a
cube is 64 cm3

Source: Heide Kiihne
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Didactical Terms (Geometry)

Terminology

Definition

Examples

Illustration

Experimenting
with
geometrical
models

Students can produce, analyze, describe
or identify models of geometrical solids
by using all of their senses.

In our example, we suggest
giving learners the
possibility to build cube
models from clay or soap
and to divide them into
unit cubes to estimate the
volume.

Sketching and

Students can use linguistic strategies of

In our example we show

drawing signed languages to produce 3D-sketches, | concrete GeoGebra-images
use GeoGebra or video to create dynamic | and animations of cube
visualization of solids or draw 2D- divisions.
sketches using paper and pencil.

Measuring To measure the volume of solid In our example, an empty

transparent models, students can first
measure their extensions by determining
height, length, and width. The
transparent solids can also be filled with
water, sand or different unit cubes to
estimate the volume.

and transparent cube with
the same measures as in
the example can be filled
with 64 unit cubes which
have a volume
measurement of 1 cm3.

L [ [ ]

09 Koerpergeometrie.pdf

hu-berlin.de) (Filler)
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Calculating To calculate the measurements of solids, a In our example,
Formel:
formula which was derived from geometrical learners can use the Vza-b-c
proofs can be used. appropriate formula
to calculate the Source: Heide Kihne
volume of a cube or
cuboid. / =534cn’ =60cm?
Geometrical | After the students are done experimenting, In our example,
Reasoning measuring, calculating and documenting their | students can try to

findings, they can try to reflect on the
geometrical arguments they used and try to
generalize their findings.

To prove mathematical statements, it could be
helpful to use the visuals suggested by Nelson
(2005) in his book “Proofs Without Words.”
However we do recommend discussing and
documenting visual proofs in signed languages
and not to rely on the visuals alone. In our
paper we give an explanation on how concrete
and visual images or pictures can be
embedded in the language and, by these
means, allow generalizations of mathematical
propositions giving not only concrete pictorial
images, but also arguments to communicate
and to think about geometrical proofs.

find the formula
which best helps
them to estimate the
volume of specific
pyramid and prism
types by dividing the
cubes held
therewithin. From
these special cases,
they can move on to
general methods for
the estimation of the
volume of prisms and
pyramids.

alean AR

Source: Nelson (2005) Proofs Without Words
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